This book introduces the reader to powerful methods of critical point theory and details successful contemporary approaches to many problems, some of which had proved resistant to attack by older methods. Topics covered include Morse theory, critical groups, the minimax principle, various notions of linking, jumping nonlinearities and the Fučík spectrum in an abstract setting, sandwich pairs and the cohomological index. Applications to semilinear elliptic boundary value problems, p-Laplacian problems and anisotropic systems are given. Written for graduate students and research scientists, the book includes numerous examples and presents more recent developments in the subject to bring the reader up to date with the latest research.
• Equips the reader for using this very powerful tool • Brings researchers up to date with the latest developments • Introduces beginning graduate students to topics at the research level
Contents
Preface; 1. Morse theory; 2. Linking; 3. Applications to semilinear problems; 4. Fučík spectrum; 5. Jumping nonlinearities; 6. Sandwich pairs; Appendix: Sobolev spaces; Bibliography; Index.


