Cambridge Catalogue  
  • Help
Home > Catalogue > Mass and Heat Transfer
Mass and Heat Transfer

Resources and solutions

This title has free online support material available.

Details

  • 130 b/w illus. 66 tables 80 exercises
  • Page extent: 404 pages
  • Size: 253 x 177 mm
  • Weight: 0.91 kg

Library of Congress

  • Dewey number: 621.402/2
  • Dewey version: 22
  • LC Classification: TP363 .R87 2008
  • LC Subject headings:
    • Heat exchangers
    • Chemical engineering--Equipment and supplies

Library of Congress Record

Hardback

 (ISBN-13: 9780521886703)




Contents



Preface page xiii
To the Student xv
Acknowledgments xix
Instructors’ and Readers’ Guide xxi
PART I  
1 Introduction 3
  REFERENCES 19
2 Chemical Reactor Analysis 20
  2.1 The Batch Reactor 21
    2.1.1  Chemical Equilibrium 25
  2.2 Reaction Rate and Determination by Experiment 26
    2.2.1  Rate Expression 26
    2.2.2  Approach to Equilibrium 32
  2.3 Tank-Type Reactors 33
    2.3.1  Batch Reactors 34
    2.3.2  Semibatch Reactors 34
    2.3.3  Continuous Flow 37
  2.4 Tubular Reactors 42
  2.5 Reactor Energy Balance 47
  REFERENCES 51
  PROBLEMS 51
3 Heat Exchanger Analysis 55
  3.1 Batch Heat Exchangers 56
    3.1.1  Level Ⅰ Analysis 57
    3.1.2  Level Ⅱ Thermal Equilibrium 58
  3.2 Rate of Heat Transfer and Determination by Experiment 60
    3.2.1  Rate Expression 61
    3.2.2  Approach to Equilibrium 65
  3.3 Tank-Type Heat Exchangers 67
    3.3.1  Batch Heat Exchanger 68
    3.3.2  Semibatch Heat Exchanger 68
              3.3.2.1  Mixed–Mixed Fluid Motions 69
              3.3.2.2  Mixed–Plug Fluid Motions 72
    3.3.3  Continuous-Flow Tank-Type Heat Exchangers 74
              3.3.3.1  Mixed–Mixed Fluid Motions 74
              3.3.3.2  Mixed–Plug Fluid Motions 78
  3.4 Tubular Heat Exchangers 79
    3.4.1  Cocurrent Flow 81
    3.4.2  Countercurrent Flow—Double-Pipe Heat Exchanger 88
  3.5 Technically Feasible Heat Exchanger Design 94
    3.5.1  Design Procedure 96
  REFERENCES 102
  PROBLEMS 103
  APPENDIX. Energy Balance 109
4 Mass Contactor Analysis 114
  4.1 Batch Mass Contactors 118
    4.1.1  Level Ⅰ Analysis 119
    4.1.2  Level Ⅱ Analysis, Phase Equilibrium 120
  4.2 Rate of Mass Transfer and Determination by Experiment 125
    4.2.1  Rate Expression 127
    4.2.2  Approach to Equilibrium 132
  4.3 Tank-Type Two-Phase Mass Contactors 134
    4.3.1  Batch Mass Contactors 135
    4.3.2  Semibatch Mass Contactors 137
              4.3.2.1  Mixed–Mixed Fluid Motions 138
              4.3.2.2  Mixed–Plug Fluid Motions 139
    4.3.3  Continuous-Flow Two-Phase Mass Contactors 143
              4.3.3.1  Mixed–Mixed Fluid Motions 144
              4.3.3.2  Design of a Continuous Mixed–Mixed Mass Contactor 146
              4.3.3.3  Mixed–Plug Fluid Motions 153
  4.4 Tubular Two-Phase Mass Contactors 156
    4.4.1  Cocurrent Flow 158
    4.4.2  Countercurrent Flow 159
    4.4.3  Gas–Liquid Countercurrent Contactors 164
  4.5 Continuous-Flow Mass Contactor Design Summary 168
  REFERENCES 175
  PROBLEMS 175
  APPENDIX A. “Log-Mean” Concentration Difference 178
  Appendix B. Equivalence Between Heat and Mass Transfer Model Equations 180
Nomenclature for Part I 181
PART II  
5 Conduction and Diffusion 187
  5.1 Rate of Thermal Conduction 187
    5.1.1  Experimental Determination of Thermal Conductivity k and Verification of Fourier’s Constitutive Equation 187
    5.1.2  Definition of the Biot Number for Heat Transfer 195
    5.1.3  Definition of the Nusselt Number 199
  5.2 Rate of Molecular Diffusion 201
    5.2.1  Experimental Determination of Binary Diffusivities DAB and Verification of Fick’s Constitutive Equation 201
    5.2.2  Definition of the Biot Number for Mass Transfer 206
    5.2.3  Definition of the Sherwood Number 208
  5.3 Geometric Effects on Steady Heat Conduction and Diffusion in Solids and Quiescent Fluids 209
    5.3.1  One-Dimensional Heat Conduction in Nonplanar Geometries 209
    5.3.2  One-Dimensional Diffusion in a Conical Geometry 211
  5.4 Conduction and Diffusion Through Composite Layered Materials in Series 212
    5.4.1  Overall Heat Transfer Coefficient for Composite Walls: Resistance Formulation 212
    5.4.2  Overall Heat Transfer Coefficient for a Tubular Exchanger 217
    5.4.3  Overall Mass Transfer Coefficient for Diffusion Through a Composite Wall 220
  5.5 Molecular Conduction and Diffusion with Generation 222
    5.5.1  Radial Heat Conduction with Generation 222
    5.5.2  Diffusion with Chemical Reaction 224
  5.6 Diffusion-Induced Convection: The Arnold Cell 225
  5.7 Basics of Membrane Diffusion: The Sorption–Diffusion Model 230
  5.8 Transient Conduction and Diffusion 231
    5.8.1  Short-Time Penetration Solution 233
    5.8.2  Small Biot Numbers—Lumped Analysis 235
  NOMENCLATURE 236
  IMPORTANT DIMENSIONLESS GROUPS 238
  REFERENCES 239
  PROBLEMS 240
6 Convective Heat and Mass Transfer 246
  6.1 The Differential Transport Equations for Fluids with Constant Physical Properties in a Laminar Boundary Layer 247
    6.1.1  Mass Conservation—Continuity Equation 248
    6.1.2  Momentum Transport—Navier–Stokes Equation 249
    6.1.3  Energy Conservation 250
    6.1.4  Species Mass Conservation 252
  6.2 Boundary-Layer Analysis and Transport Analogies 254
    6.2.1  Laminar Boundary Layer 254
    6.2.2  Reynolds Transport Analogy 257
    6.2.3  Effects of Material Properties: The Chilton–Colburn Analogy 260
    6.2.4  Turbulent Boundary Layers 263
  6.3 Transport Correlations for Specific Geometries 264
  6.4 Models for Estimating Transport Coefficients in Fluid–Fluid Systems 273
    6.4.1  Film Theory 273
    6.4.2  Penetration Theory 273
    6.4.3  Surface Renewal Theory 278
    6.4.4  Interphase Mass Transfer 279
  6.5 Summary of Convective Transport Coefficient Estimations 281
    6.5.1  Heat Exchangers 281
    6.5.2  Mass Contactors 284
  NOMENCLATURE 286
  REFERENCES 287
  PROBLEMS 287
  APPENDIX A. Derivation of the Transport Equations 293
  APPENDIX B. Vector Notation 299
7 Estimation of the Mass Transfer Coefficient and Interfacial Area in Fluid–Fluid Mass Contactors 301
  7.1 Estimation of Bubble and Drop Size 304
  7.2 Tank-Type Mass Contactors 307
    7.2.1  Mixed–Mixed Interfacial Area Estimation 307
    7.2.2  Mixed–Mixed Km Estimation 309
    7.2.3  Mixed–Plug Area Estimation 309
    7.2.4  Mixed–Plug Km Estimation 313
  7.3 Tubular Contactors 316
    7.3.1  Cocurrent Area Estimation 316
    7.3.2  Cocurrent Km Estimation 318
    7.3.3  Countercurrent Area Estimation 318
    7.3.4  Countercurrent Km Estimation 320
  NOMENCLATURE 320
  REFERENCES 321
  PROBLEMS 322
  APPENDIX. Bubble and Drop Breakage 323
8 Technically Feasible Design Case Studies 327
  8.1 Technically Feasible Design of a Heat Exchanger 328
  8.2 Technically Feasible Design of a Countercurrent Mass Contactor 335
  8.3 Analysis of a Pilot-Scale Bioreactor 345
  NOMENCLATURE 353
  REFERENCES 354
  PROBLEMS 354
Index 363

printer iconPrinter friendly version AddThis