Cambridge Catalogue  
  • Help
Home > Catalogue > Applied Geophysics in Periglacial Environments
Applied Geophysics in Periglacial Environments


  • Page extent: 256 pages
  • Size: 247 x 174 mm
  • Weight: 0.64 kg


 (ISBN-13: 9780521889667)

Many research problems in cryospheric science, such as global warming-induced permafrost degradation, require information about the subsurface, which can be imaged using geophysical methods. This book is a practical guide to the application of geophysical techniques in mountainous and polar terrain, where the harsh environment and nature of the subsurface pose particular challenges. It starts with an introduction to the main geophysical methods and then demonstrates their application in periglacial environments through various case studies - written by a team of international experts. The final part of the book presents a series of reference tables with typical values of geophysical parameters for periglacial environments. This handbook is a valuable resource for glaciologists, geomorphologists and geologists requiring an introduction to geophysical techniques, as well as for geophysicists lacking experience of planning and conducting field surveys in cold regions.

• Includes many different field examples from a variety of international researchers to provide an overview of state-of-the-art geophysical applications and interpretations • Includes comprehensive summary tables of typical geophysical parameters for periglacial environments that serve as a reference for future field surveys on all types of periglacial and glacial terrain • Presents a checklist at the end of each method chapter to facilitate the first steps in planning and conducting geophysical surveys


Part I. Introduction; Part II. Introductory Chapters for the Main Geophysical Methods Applied: 1. Electric methods Christof Kneisel and Christian Hauck; 2. Electromagnetic methods Andreas Hördt and Christian Hauck; 3. Refraction seismics Lothar Schrott and Thomas Hoffmann; 4. Ground-penetrating radar Ivar Berthling and Kjetil Melvold; Part III. Case Studies: 5. Typology of vertical electrical soundings for permafrost/ground ice investigation in the forefields of small alpine glaciers Reynald Delaloye and Christophe Lambiel; 6. ERT imaging for frozen ground detection Mamoru Ishikawa; 7. Electrical resistivity values of frozen soil from VES and TEM field observations and laboratory experiments Koichiro Harada; 8. Results of geophysical surveys on Kasprowy Wierch, the Tatra Mountains Wojciech Dobinski, Bogdon Zogala, Krystian Wzietek and Leszek Litwin; 9. Reassessment of DC resistivity in rock glaciers by comparing with P-wave velocity: a case study in the Swiss Alps Atsushi Ikeda; 10. Quantifying the ice content in low-altitude scree slopes using geophysical methods Christian Hauck and Christof Kneisel; 11. The use of GPR in determining talus thickness and talus structure Oliver Sass; 12. GPR soundings of rock glaciers on Svalbard Ivar Berthling, Bernd Etzelmüller, Herman Farbrot, Ketil Isaksen, Morgan Wåle and Rune Ødegård; 13. Arctic glaciers and ground-penetrating radar case-study: Stagnation Glacier, Bylot Island, Canada Tristram D. L. Irvine-Fynn and Brian J. Moorman; 14. Mapping of subglacial topography using GPR for determining subglacial hydraulic conditions Kjetil Melvold and Thomas V. Schuler; 15. Snow measurements using GPR: example from Amundsenisen, Svalbard Kjetil Melvold; 16. Mapping Frazil ice conditions in rivers using ground penetrating radar Ivar Berthling, Halfdan Benjaminsen and Ånund Kvambekk; Part IV. Tables of Typical Values of Geophysical Parameters for Periglacial Environments; Index.


Christof Kneisel, Christian Hauck, Andreas Hördt, Lothar Schrott, Thomas Hoffmann, Ivar Berthling, Kjetil Melvold, Reynald Delaloye, Christophe Lambiel, Mamoru Ishikawa, Koichiro Harada, Wojciech Dobinski, Bogdon Zogała, Krystian Wzietek, Leszek Litwin, Atsushi Ikeda, Oliver Sass, Bernd Etzelmüller, Herman Farbrot, Ketil Isaksen, Morgan Wåle, Rune Ødegård, Tristram D. L. Irvine-Fynn, Brian J. Moorman, Thomas V. Schuler, Halfdan Benjaminsen, Ånund Kvambekk

printer iconPrinter friendly version AddThis