Cambridge Catalogue  
  • Help
Home > Catalogue > Mathematics of Quantization and Quantum Fields
Mathematics of Quantization and Quantum Fields


  • 11 b/w illus. 5 tables
  • Page extent: 688 pages
  • Size: 247 x 174 mm
  • Weight: 1.29 kg

Library of Congress

  • Dewey number: 530.1201/51
  • Dewey version: 23
  • LC Classification: QC174.17.G46 D47 2013
  • LC Subject headings:
    • Geometric quantization
    • Quantum theory--Mathematics
    • SCIENCE / Mathematical Physics.--bisacsh

Library of Congress Record


 (ISBN-13: 9781107011113)

Unifying a range of topics that are currently scattered throughout the literature, this book offers a unique and definitive review of mathematical aspects of quantization and quantum field theory. The authors present both basic and more advanced topics of quantum field theory in a mathematically consistent way, focusing on canonical commutation and anti-commutation relations. They begin with a discussion of the mathematical structures underlying free bosonic or fermionic fields, like tensors, algebras, Fock spaces, and CCR and CAR representations (including their symplectic and orthogonal invariance). Applications of these topics to physical problems are discussed in later chapters. Although most of the book is devoted to free quantum fields, it also contains an exposition of two important aspects of interacting fields: diagrammatics and the Euclidean approach to constructive quantum field theory. With its in-depth coverage, this text is essential reading for graduate students and researchers in departments of mathematics and physics.

• Unifies various aspects of quantization and quantum fields, encouraging a deeper understanding of some of the mathematical aspects of quantum field theory • Fills a gap in the market by focusing on the mathematical aspects of quantum field theory • Depth of coverage - the reader will find rigorous mathematical results


Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.


'… offers much highly valuable material.' Stig Stenholm, Contemporary Physics

printer iconPrinter friendly version AddThis