Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-10T16:22:50.092Z Has data issue: false hasContentIssue false

Student processes

Published online by Cambridge University Press:  01 July 2016

C. C. Heyde*
Affiliation:
Australian National University and Columbia University
N. N. Leonenko*
Affiliation:
Cardiff University
*
Postal address: Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia. Email address: chris@maths.anu.edu.au
∗∗ Postal address: Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK. Email address: leonenkon@cardiff.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stochastic processes with Student marginals and various types of dependence structure, allowing for both short- and long-range dependence, are discussed in this paper. A particular motivation is the modelling of risky asset time series.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2005 

References

Ait-Sahalia, Y. (1996). Nonparametric pricing of interest rate derivative securities. Econometrica 64, 527560.Google Scholar
Anh, V. V., Heyde, C. C. and Leonenko, N. N. (2002). Dynamic models of long-memory processes driven by Lévy noise. J. Appl. Prob. 39, 730747.CrossRefGoogle Scholar
Anh, V. V., Knopova, V. P. and Leonenko, N. N. (2004). Continuous-time stochastic processes with cyclical long-range dependence. Austral. N. Z. J. Statist. 46, 275296.Google Scholar
Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for logarithm of particle size. Proc. R. Soc. London A 353, 401419.Google Scholar
Barndorff-Nielsen, O. E. (1978). Hyperbolic distributions and distributions on hyperbolae. Scand. J. Statist. 5, 151157.Google Scholar
Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type. Finance Stoch. 2, 4168.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. (2001). Superposition of Ornstein–Uhlenbeck type processes. Theory Prob. Appl. 45, 175194.Google Scholar
Barndorff-Nielsen, O. E. and Halgreen, C. (1977). Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Z. Wahrscheinlichkeitsth. 38, 309312.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Leonenko, N. N. (2005). Spectral properties of superpositions of Ornstein–Uhlenbeck type processes. To appear in Method. Comput. Appl. Prob. Google Scholar
Barndorff-Nielsen, O. E. and Pérez-Abreu, V. (1999). Stationary and self-similar processes driven by Lévy processes. Stoch. Process. Appl. 84, 357369.Google Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial econometrics. J. R. Statist. Soc. B 63, 167241.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E., Jensen, J. L. and Sørensen, M. (1998). Some stationary processes in discrete and continuous time. Adv. Appl. Prob. 30, 9891007.Google Scholar
Barndorff-Nielsen, O. E., Nicalato, E. and Shephard, N. (2002). Some recent developments in stochastic volatility modelling. Quant. Finance 2, 1123.Google Scholar
Bateman, H. and Erdélyi, A. (1953). Higher Transcendental Functions, Vol. 2. McGraw-Hill, New York.Google Scholar
Berman, S. M. (1992). Sojourns and Extremes of Stochastic Processes. Wadsworth and Brooks, Pacific Grove, CA.Google Scholar
Bertoin, J. (1996). Lévy Processes (Camb. Tracts Math. 121). Cambridge University Press.Google Scholar
Bibby, B. M. and Sørensen, M. (1997). A hyperbolic diffusion model for stock prices. Finance Stoch. 1, 2541.Google Scholar
Bibby, B. M., Skovgaard, I. M. and Sørensen, M. (2003). Diffusion-type models with given marginal and autocorrelation function. Bernoulli 11, 191220.Google Scholar
Bingham, N. H. and Kiesel, R. (2002). Semi-parametric modelling in finance: theoretical foundations. Quant. Finance 2, 241250.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, T. L. (1987). Regular Variation. Cambridge University Press.CrossRefGoogle Scholar
Borland, L. (2002). A theory of non-Gaussian option pricing. Quant. Finance 2, 415431.Google Scholar
Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman and Hall, Boca Raton, FL.Google Scholar
Costa, J., Hero, A. and Vignat, C. (2003). On solutions to multivariate maximum α-entropy problems. In Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (Lisbon, July 2003; Lecture Notes Comput. Sci. 2683), Springer, Berlin, pp. 211228.Google Scholar
Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics. Interscience, New York.Google Scholar
Cramér, A. J. and Leadbetter, M. R. (1967). Stationary and Related Stochastic Processes. John Wiley, New York.Google Scholar
Dreier, I. and Kotz, S. (2002). A note on the characteristic function of the t-distribution. Statist. Prob. Lett. 57, 221224.Google Scholar
Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli 1, 281299.CrossRefGoogle Scholar
Grosswald, E. (1976). The Student t-distribution of any degree of freedom is infinitely divisible. Z. Wahrscheinlichkeitsth. 36, 103109.Google Scholar
Halgreen, C. (1979). Self-decomposability of generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichkeitsth. 47, 1317.Google Scholar
Havdra, M. and Charvát, F. (1967). Quantification method of classification processes: concept of structural α-entropy. Kybernetika 3, 3035.Google Scholar
Heyde, C. C. (1999). A risky asset model with strong dependence through fractal activity time. J. Appl. Prob. 36, 12341239.Google Scholar
Heyde, C. C. and Gay, R. (2002). Fractals and contingent claims. Preprint, Australian National University.Google Scholar
Heyde, C. C. and Liu, S. (2001). Empirical realities for a minimal description risky asset model. The need for fractal features. J. Korean Math. Soc. 38, 10471059.Google Scholar
Heyde, C. C. and Yang, Y. (1997). On defining long-range dependence. J. Appl. Prob. 34, 939944.Google Scholar
Hurst, S. R. and Platen, E. (1997). The marginal distribution of returns and volatility. In L1-Statistical Procedures and Related Topics (IMS Lecture Notes Monogr. Ser. 31), ed. Dodge, Y., IMS, Hayward, CA, pp. 301314.Google Scholar
Hurst, S. R., Platen, E. and Rachev, S. R. (1997). Subordinated Markov models: a comparison. Finan. Eng. Japanese Markets 4, 97124.Google Scholar
Jurek, Z. J. (2001). Remarks on the self-decomposability and new examples. Demonstr. Math. 34, 241250.Google Scholar
Jurek, Z. J. and Mason, J. D. (1993). Operator-Limit Distributions in Probability Theory. John Wiley, New York.Google Scholar
Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace Distribution and Generalizations. Birkhäuser, Boston, MA.Google Scholar
Kwapien, S. and Woyczyński, W. A. (1992). Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston, MA.Google Scholar
Lamperti, J. W. (1962). Semi-stable stochastic process. Trans. Amer. Math. Soc. 104, 6278.Google Scholar
Leonenko, N. N. (1999). Limit Theorems for Random Fields with Singular Spectrum. Kluwer, Dordrecht.Google Scholar
Madan, D. B. and Seneta, E. (1990). The variance gamma (V.G.) model for share market returns. J. Business 63, 511524.Google Scholar
Mandelbrot, B. B. (2001a). Scaling in financial prices. I. Tails and dependence. Quant. Finance 1, 113123.Google Scholar
Mandelbrot, B. B. (2001b). Scaling in financial prices. II. Multifractals and the star equation. Quant. Finance 1, 124130.Google Scholar
Rajput, B. and Rosiński, J. (1989). Spectral representations of infinitely divisible processes. Prob. Theory Relat. Fields 82, 451487.Google Scholar
Rényi, A. (1961). On measures of entropy and application. In Proc. 4th Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California Press, Berkeley, CA, pp. 547561.Google Scholar
Rosiński, J. (1991). On a class of infinitely divisible processes represented as mixtures of Gaussian processes. In Stable Processes and Related Topics, eds Cambanis, S., Samorodnitsky, G. and Taqqu, M. S., Birkhäuser, Basel, pp. 2741.Google Scholar
Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York.Google Scholar
Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Schoutens, W. (2003). Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley, Chichester.Google Scholar
Seneta, E. (2004). Fitting the variance-gamma model to financial data. In Stochastix Methods and Their Applications (J. Appl. Prob. Spec. Vol. 41A), Applied Probability Trust, Sheffield, pp. 177187.Google Scholar
Sørensen, M. and Bibby, M. (2003). Hyperbolic processes in finance. In Handbook of Heavy Tailed Distributions in Finance, ed. Rachev, S. T., Elsevier, Amsterdam, pp. 211248.Google Scholar
Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitsth. 31, 287302.CrossRefGoogle Scholar
Tarami, B. and Pourahmadi, M. (2003). Multi-variate t autoregressions: innovations, prediction variances and exact likelihood equations. J. Time Ser. Anal. 24, 739754.Google Scholar
Tsallis, C. and Bukman, D. J. (1996). Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 54, 21972200.Google Scholar
Tsallis, C., Levy, S. V. F., Souza, A. M. C. and Maynard, R. (1995). Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. Phys. Rev. Lett. 75, 35893593.Google Scholar
Vignat, C. and Bercher, J. F. (2003). Analysis of signals in the Fisher–Shannon information plane. Phys. Rev. A 312, 2733.Google Scholar
Watson, G. N. (1958). A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press.Google Scholar
Witkovsky, V. (2002). Exact distribution of positive linear combinations of inverted chi-square random variables with odd degrees of freedom. Statist. Prob. Lett. 56, 4550.Google Scholar
Woyczyński, W. A. (1998). Burgers-KPZ Turbulence (Lecture Notes Math. 1700). Springer, Berlin.Google Scholar