Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-09T13:45:16.475Z Has data issue: false hasContentIssue false

Disturbance observer-based fixed-time control for hypersonic morphing vehicles with uncertainties

Published online by Cambridge University Press:  08 January 2024

H. Zhang
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, China
P. Wang*
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, China
G. Tang
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, China
W. Bao
Affiliation:
China Aerospace Science & Technology Corporation, Beijing, China
*
Corresponding author: P. Wang; Email: wonderful2035@163.com

Abstract

The attitude-tracking problem of hypersonic morphing vehicles (HMVs) is investigated in this research. After introducing variable-span wings, the optimal aerodynamic shape is available throughout the entire flight mission. However, the morphing wings cause significant changes in aerodynamic coefficients and mass distribution, challenging the attitude control. Therefore, a complete design procedure for the flight control system is proposed to address the issue. Firstly, the original model and the control-oriented model of HMVs are built. Secondly, in order to eliminate the influence caused by the multisource uncertainties, an adaptive fixed-time disturbance observer combined with fuzzy control theory is established. Thirdly, the fixed-time control method is developed to stabilise hypersonic morphing vehicles based on a multivariable sliding mode manifold. The control input can be obtained directly. Finally, the effectiveness of the proposed method is proved with the help of the Lyapunov theory and simulation results.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bao, C., Wang, P. and Tang, G. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase, Chin. J. Aeronaut., 2021, 34, (5), pp 535553. doi: 10.1016/j.cja.2020.11.009 CrossRefGoogle Scholar
Liu, B., Liang, H., Han, Z.-H. and Yang, G. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range, Aerosp. Sci. Technol., 2022, 124, p 107557. doi: 10.1016/j.ast.2022.107557 CrossRefGoogle Scholar
Liu, Y., Deng, J. and Lu, Y. Preliminary research on optimal design based on control demands for hypersonic morphing vehicle, IEEE Aerosp. Electr. Syst. Magaz., 2013, 28, (5), pp 2331. doi: 10.1109/MAES.2013.6516146 CrossRefGoogle Scholar
Liu, H., Zhang, Q., Cui, L., Han, X. and Yu, Y. Attitude control of hypersonic morphing aircraft based on incremental backstepping sliding mode, in 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), 2022, IEEE, Xi’an, China, pp 13241331.CrossRefGoogle Scholar
Liu, H., Zhang, Q., Cui, L., Han, X. and Yu, Y. Attitude control of hypersonic morphing aircraft based on incremental backstepping sliding mode, in 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), 2022, IEEE, Xi’an, China, pp 13241331. doi: 10.1109/ICSP54964.2022.9778601 CrossRefGoogle Scholar
Ding, Y., Yue, X., Chen, G. and Si, J. Review of control and guidance technology on hypersonic vehicle. Chin. J. Aeronaut., 2022, 35, pp 118.CrossRefGoogle Scholar
Ding, Y., Yue, X., Chen, G. and Si, J. Review of control and guidance technology on hypersonic vehicle, Chin. J. Aeronaut., 2022, 35, (7), pp 118. doi: 10.1016/j.cja.2021.10.037 CrossRefGoogle Scholar
Ren, W., Jiang, B. and Yang, H. Singular perturbation-based fault-tolerant control of the air-breathing hypersonic vehicle, IEEE/ASME Trans. Mechatron., 2019, 24, (6), pp 25622571, doi: 10.1109/TMECH.2019.2946645 CrossRefGoogle Scholar
Zhang, X., Hu, W., Wei, C. and Xu, T. Nonlinear disturbance observer based adaptive super-twisting sliding mode control for generic hypersonic vehicles with coupled multisource disturbances, Eur. J. Contr., 2021, 57, pp 253262. doi: 10.1016/j.ejcon.2020.06.001 CrossRefGoogle Scholar
Lu, Y. Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle, Chin. J. Aeronaut., 2021, 34, (2), pp 396406. doi: 10.1016/j.cja.2020.09.053 CrossRefGoogle Scholar
Wang, F., Li, Y., Zhou, C., Zong, Q. and Hua, C. Composite practically fixed time controller design for a hypersonic vehicle with multisource uncertainty and actuator fault, IEEE Trans. Aerosp. Electron. Syst., 2021, 57, (6), pp 43754389. doi: 10.1109/TAES.2021.3103237 CrossRefGoogle Scholar
Wang, F., Wen, L., Zhou, C. and Hua, C. Adaptive preassigned-time controller design for a hypersonic vehicle with improved performance and uncertainties, ISA Trans., 2023, 132, pp 309328. doi: 10.1016/j.isatra.2022.05.040 CrossRefGoogle ScholarPubMed
Chen, K., Zhu, S., Wei, C., Xu, T. and Zhang, X. Output constrained adaptive neural control for generic hypersonic vehicles suffering from non-affine aerodynamic characteristics and stochastic disturbances, Aerosp. Sci. Technol., 2021, 111, p 106469. doi: 10.1016/j.ast.2020.106469 CrossRefGoogle Scholar
Man, C. and Bai, J. Nonlinear disturbance observer based fuel-consumption optimal control for airbreathing hypersonic vehicles, in 2020 IEEE 16th International Conference on Control & Automation (ICCA), IEEE, Singapore, 2020, pp 15351540. doi: 10.1109/ICCA51439.2020.9264493 CrossRefGoogle Scholar
Zhao, J., Feng, D., Cui, J. and Wang, X. Finite-time extended state observer-based fixed-time attitude control for hypersonic vehicles, Mathematics, 2022, 10, (17), p 3162. doi: 10.3390/math10173162 CrossRefGoogle Scholar
Liu, L., Liu, Y., Zhou, L., Wang, B., Cheng, Z. and Fan, H. Cascade ADRC with neural network-based ESO for hypersonic vehicle, J. Franklin Inst., 2022, p S0016003222006688. doi: 10.1016/j.jfranklin.2022.09.019 Google Scholar
Wu, T., Wang, H., Yu, Y., Liu, Y. and Wu, J. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles, Appl. Math. Modell., 2021, 98, pp 143160. doi: 10.1016/j.apm.2021.04.033 CrossRefGoogle Scholar
Hu, K.-Y., Wang, X. and Yang, C. Hybrid adaptive dynamic inverse compensation for hypersonic vehicles with inertia uncertainty and disturbance, Appl. Sci., 2022, 12, (21), p 11032. doi: 10.3390/app122111032 CrossRefGoogle Scholar
Yu, C., Jiang, J., Zhen, Z., Bhatia, A.K. and Wang, S. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties, Aerosp. Sci. Technol., 2020, 107, p 106244. doi: 10.1016/j.ast.2020.106244 CrossRefGoogle Scholar
Chen, C., Huang, J., Wu, D. and Tu, X. Interval type-2 fuzzy disturbance observer-based T–S fuzzy control for a pneumatic flexible joint, IEEE Trans. Ind. Electron., 2022, 69, (6), pp 59625972. doi: 10.1109/TIE.2021.3090708 CrossRefGoogle Scholar
Qiu, J., Wang, T., Sun, K., Rudas, I.J. and Gao, H. Disturbance observer-based adaptive fuzzy control for strict-feedback nonlinear systems with finite-time prescribed performance, IEEE Trans. Fuzzy Syst., 2022, 30, (4), pp 11751184. doi: 10.1109/TFUZZ.2021.3053327 CrossRefGoogle Scholar
Zhao, Z., Ren, Y., Mu, C., Zou, T. and Hong, K.-S. Adaptive neural-network-based fault-tolerant control for a flexible string with composite disturbance observer and input constraints, IEEE Trans. Cyber., 2022, 52, (12), pp 1284312853. doi: 10.1109/TCYB.2021.3090417 CrossRefGoogle ScholarPubMed
Zhao, H.-W. and Yang, L. Global adaptive neural backstepping control of a flexible hypersonic vehicle with disturbance estimation, AEAT, 2022, 94, (4), pp 492504. doi: 10.1108/AEAT-08-2020-0178 CrossRefGoogle Scholar
Yu, X., Li, P. and Zhang, Y. Fixed-time actuator fault accommodation applied to hypersonic gliding vehicles, IEEE Trans. Autom. Sci. Eng., 2021, 18, (3), pp 14291440. doi: 10.1109/TASE.2020.3008846 CrossRefGoogle Scholar
Ding, Y., Yue, X., Liu, C., Dai, H. and Chen, G. Finite-time controller design with adaptive fixed-time anti-saturation compensator for hypersonic vehicle, ISA Trans., 2022, 122, pp 96113. doi: 10.1016/j.isatra.2021.04.038 CrossRefGoogle ScholarPubMed
Guo, J., Yang, S. and Guo, Z. Robust tracking for hypersonic vehicles subjected to mismatched uncertainties via fixed-time sliding mode control, Proc. Inst. Mech. Eng G: J. Aerosp. Eng., 2021, 235, (14), pp 21452153. doi: 10.1177/0954410021990239 CrossRefGoogle Scholar
Tang, X., Zhai, D. and Li, X. Adaptive fault-tolerance control-based finite-time backstepping for hypersonic flight vehicle with full state constrains, Inf. Sci., 2020, 507, pp 5366. doi: 10.1016/j.ins.2019.08.012 CrossRefGoogle Scholar
Zhang, X., Zong, Q., Dou, L., Tian, B. and Liu, W. Improved finite-time command filtered backstepping fault-tolerant control for flexible hypersonic vehicle, J. Franklin Inst., 2020, 357, (13), pp 85438565. doi: 10.1016/j.jfranklin.2020.05.017 CrossRefGoogle Scholar
Ding, Y., Yue, X., Chen, G. and Si, J. Review of control and guidance technology on hypersonic vehicle, Chin. J. Aeronaut., 2022, 35, pp 118. doi: 10.1016/j.cja.2021.10.037 CrossRefGoogle Scholar
Dong, Z., Li, Y. and Lv, M. Adaptive nonsingular fixed-time control for hypersonic flight vehicle considering angle of attack constraints, Int. J. Robust Nonlin Control, 2023, 33, pp 67546777. https://doi.org/10.1002/rnc.6722 CrossRefGoogle Scholar
Zhang, H., Wang, P., Tang, G. and Bao, W. Fuzzy disturbance observer-based dynamic sliding mode control for hypersonic morphing vehicles, Aerosp. Sci. Technol., 2023, 142, pp 108633. https://doi.org/10.1016/j.ast.2023.108633 CrossRefGoogle Scholar
Zhang, H., Wang, P., Tang, G. and Bao, W. Fixed-time sliding mode control for hypersonic morphing vehicles via event-triggering mechanism, Aerosp. Sci. Technol., 2023, 140, pp 108458. https://doi.org/10.1016/j.ast.2023.108458 CrossRefGoogle Scholar
Andrieu, V., Praly, L. and Astolfi, A. Homogeneous approximation, recursive observer design, and output feedback, SIAM J. Contr. Optimiz., 2008, 47, (4), pp 18141850. doi: 10.1137/060675861 CrossRefGoogle Scholar
Basin, M., Bharath Panathula, C. and Shtessel, Y. Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation, IET Contr. Theory Appl., 2017, 11, (8), pp 11041111. doi: 10.1049/iet-cta.2016.0572 CrossRefGoogle Scholar
Perruquetti, W., Floquet, T. and Moulay, E. Finite-time observers: application to secure communication, IEEE Trans. Automat. Control, 2008, 53, (1), pp 356360. doi: 10.1109/TAC.2007.914264 CrossRefGoogle Scholar
Yang, F., Wei, C.-Z., Wu, R. and Cui, N.-G. Non-recursive fixed-time convergence observer and extended state observer, IEEE Access, 2018, 6, pp 6233962351.CrossRefGoogle Scholar
Wang, X., Guo, J., Tang, S. and Qi, S. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle, ISA Trans., 2019, 88, pp 233245. doi: 10.1016/j.isatra.2018.12.013 CrossRefGoogle ScholarPubMed