Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-21T06:39:59.846Z Has data issue: false hasContentIssue false

The Ball-on-Three-Ball Test for Tensile Strength: Refined Methodology and Results for Three Hohokam Ceramic Types

Published online by Cambridge University Press:  20 January 2017

Margaret E. Beck*
Affiliation:
Department of Anthropology, University of Arizona, Tucson, AZ 85721

Abstract

Weak impacts, such as those caused by bumping vessels together or knocking vessels over, are a major cause of ceramic vessel breakage. The ball-on-three ball test for resistance to biaxial flexure is intended to test resistance to weak impacts. Ceramic types with greater resistance to biaxial flexure should therefore have longer use lives than those having less resistance. Data on ceramic strength are also important for understanding technological change and the demand for exchanged vessels. This paper refines the original methodology for use of the ball-on-three-ball test (Neupert 1994) and explores the strength of Hohokam plainware and Red-on-buff ceramics from south-central Arizona. Gila Plain sherds exhibit the most resistance to biaxial flexure of the three types tested. Casa Grande Red-on-buff sherds appear to be stronger than earlier Sacaton Red-on-buff sherds. Whole and reconstructed Casa Grande Red-on-buff mortuary vessels are also significantly less fragmented than Sacaton Red-on-buff mortuary vessels from the sites of Snaketown (AZ U:13:1) and AZ U:13:21, suggesting that Casa Grande Red-on-buff vessels have greater resistance to weak impacts.

Résumé

Résumé

Los impactos menores, como los que suceden cuando se golpean unas vasijas con otras o se les tira, son una de las principales causas de la ruptura de piezas cerámicas. La prueba de resistencia de flexura biaxial, denominada ball-on-three-ball, se realiza para determinar la resistencia de las piezas a impactos leves. Por lo tanto, los tipos cerámicos con una mayor resistencia a la flexura biaxial deberían tener una vida útil más prolongada que los que tienen una menor resistencia. Asimismo, la información acerca de la dureza de las piezas es importante para comprender el cambio tecnológico y la demanda de piezas de intercambio. En este artículo se perfecciona la metodología original de la prueba ball-on-three-ball (Neupert 1994) y se analiza la resistencia de las lozas lisas y rojo sobre bayo hohokam Liso y Rojo sobre Bayo de la región centro-sur de Arizona. Los tiestos de tipo Gila Liso presentan mayor resistencia a la flexión biaxial de los tres tipos bajo estudio. Las muestras del tipo Casa Grande Rojo sobre Bayo al parecer son más resistentes que el tipo más temprano Sacaton Rojo sobre Bayo. Respecto a las piezas completas de ofrendas funerarias reconstruidas del tipo Casa Grande Rojo sobre Bayo, su fragmentación es radicalmente menor que la de las vasijas Sacaton Rojo sobre Bayo en los sitios de Snaketown (AZ U:13:1) y de AZ U:13:21, lo cual sugiere que las vasijas Casa Grande Rojo sobre Bayo cuentan tienen una mayor resistencia a los impactos menores.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Abbott, D. R., Stinson, S. L., and Van Keuren, S. 2001 The Economic Implications of Hohokam Buff Ware Exchange during the Early Sedentary Period. Kiva 67:729.CrossRefGoogle Scholar
American Society for Testing Materials 1998 Standard Test Method for Biaxial Flexure Strength (Modulus of Rupture) for Ceramic Substrates. ASTM Designation F394-78 (reapproved 1996). Annual Book of ASTM Standards, sec. 15, vol. 15.02. American Society for Testing Materials, West Conshohocken, Pennsylvania.Google Scholar
Ammerman, A. J., and Feldman, M. W. 1974 On the “Making” of an Assemblage of Stone Tools. American Antiquity 39:610616.CrossRefGoogle Scholar
Bronitsky, G. 1986 Compressive Testing of Ceramics: A Southwestern Example. Kiva 51:8598.CrossRefGoogle Scholar
Bronitsky, G., and Hamer, R. 1986 Experiments in Ceramic Technology: The Effects of Various Tempering Materials on Impact and Thermal Shock Resistance. American Antiquity 51:89101.CrossRefGoogle Scholar
Cable, J. S., Turley, A., and Effland, R. W. 1988 The La Lomita Pequeña Ceramic Assemblage. In Excavations at La Lomita Pequeña: A Santa Cruz/Sacaton Phase Hamlet in the Salt River Valley, edited by Mitchell, D. R., pp. 95177. Soil Systems, Phoenix, Arizona.Google Scholar
Cook, S. F. 1972 Can Pottery Residues Be Used as an Index to Population? Contributions of the University of California Archaeological Research Facility 14:1739.Google Scholar
Dean, J. S. 1991 Thoughts on Hohokam Chronology. In Exploring the Hohokam: Prehistoric Desert Peoples of the American Southwest, edited by Gumerman, G., pp. 61149. University of New Mexico Press, Albuquerque.Google Scholar
de Barros, P. L. F. 1982 The Effects of Variable Site Occupation Span on the Results of Frequency Seriation. American Antiquity 47:291315.CrossRefGoogle Scholar
DeBoer, W. R. 1985 Pots and Pans Do Not Speak, Nor Do They Lie: The Case for Occasional Reductionism. In Decoding Prehistoric Ceramics, edited by Nelson, B., pp. 347357. Southern Illinois University Press, Carbondale.Google Scholar
Doyel, D. E. 1974 Excavations in the Escalante Ruin Group, Southern Arizona. Archaeological Series No. 37. Arizona State Museum, Tucson.Google Scholar
Ferg, A. 1983 The Junkyard Site (AZ U: 15:83). In Hohokam Archaeology along the Salt-Gila Aqueduct, Central Arizona Project, Volume VI, part IV: Habitation Sites on the Gila River, edited by Teague, L. S. and Crown, P. L., pp. 377166. Archaeological Series No. 150. Arizona State Museum, Tucson.Google Scholar
Foster, G. 1960 Life-Expectancy of Utilitarian Pottery in Tzintzuntzan, Michoacan, Mexico. American Antiquity 25:606609.CrossRefGoogle Scholar
Gladwin, H. S., Haury, E. W., Sayles, E. B., and Gladwin, N. 1965 Excavations at Snaketown: Material Culture. University of Arizona Press, Tucson.Google Scholar
Haury, E. W. 1976 The Hohokam, Desert Farmers and Craftsmen: Excavations at Snaketown, 1964-1965. University of Arizona Press, Tucson.CrossRefGoogle Scholar
Kirstein, A. R, and Wooley, R. M. 1967 Symmetrical Bending of Thin Circular Elastic Plates on Equally Spaced Point Supports. Journal of Research of the National Bureau of Standards C71:l10.Google Scholar
Longacre, W.A. 1999 Standardization and Specialization: What's the Link? In Pottery and People: A Dynamic Interaction, edited by Skibo, J. M. and Peinman, G. M., pp. 4458. University of Utah Press, Salt Lake City.Google Scholar
Longacre, W. A., Xia, J., and Yang, T. 2000 I Want to Buy a Black Pot. Journal of Archaeological Method and Theory 7:273293.CrossRefGoogle Scholar
Mabry, J., Skibo, J. M., Schiffer, M. B., and Kvamme, K. 1988 Use of a Falling-Weight Tester for Assessing Ceramic Impact Strength. American Antiquity 53:829839.CrossRefGoogle Scholar
Marshall, D. B. 1980 An Improved Biaxial Flexure Test for Ceramics. Ceramic Bulletin 59:551553.Google Scholar
Mills,, B. J. 1989 Integrating Functional Analyses of Vessels and Sherds through Models of Ceramic Assemblage Formation. World Archaeology 21:133147.CrossRefGoogle Scholar
Neupert, M. A. 1994 Strength Testing Archaeological Ceramics: A New Perspective. American Antiquity 59:709723.CrossRefGoogle Scholar
Odegaard, N., and Jacobs, M. 1989 Salt Problems in Hohokam Pottery. Archaeological Conservation Newsletter 1(1):57.Google Scholar
Pauketat, T. 1989 Monitoring Mississippian Homestead Occupation Span and Economy Using Ceramic Refuse. American Antiquity 54:288310.CrossRefGoogle Scholar
Rathje, W, and Schiffer, M. B. 1982 Archaeology. Harcourt Brace Jovanovich, New York.Google Scholar
Rice, P. M. 1987 Pottery Analysis: A Sourcebook. University of Chicago Press, Chicago.Google Scholar
Ritter, J. E. Jr., Jakus, K. Batakis, A. , and Bandyopadhyay, N. 1980 Appraisal of Biaxial Strength Testing. Journal of Non- Crystalline Solids 38-39:419424.CrossRefGoogle Scholar
Schiffer, M. B. 1975 The Effects of Occupation Span on Site Content. In The Cache River Archeological Project: An Experiment in Contract Archaeology, by Schiffer, M. B. and House, J. H., pp. 249251. Arkansas Archeological Survey, Research Series No. 8.Google Scholar
Schiffer, M. B. 1987 Formation Processes of the Archaeological Record. University of New Mexico Press, Albuquerque.Google Scholar
Schiffer, M. B., Skibo, J. M., Boelke, T. C., Neupert, M. A., and Aronson, M. 1994 New Perspectives on Experimental Archaeology: Surface Treatments and Thermal Response of the Clay Cooking Pot. American Antiquity 59:197217.CrossRefGoogle Scholar
Schlanger, S. 1990 Artifact Assemblage Composition and Site Occupation Duration. In Perspectives on Southwestern Prehistory, edited by Minnis, P. E. and Redman, C. L., pp. 103121. Westview Press, Boulder.Google Scholar
Shaw C., W, Jr. 1983 The Gopherette Site(AZU: 15:87). In Hohokam Archaeology along the Salt-Gila Aqueduct, Central Arizona Project, Volume VI, part III: Habitation Sites on the Gila River, edited by Teague, L. S. and Crown, P. L., pp. 295345. Archaeological Series No. 150. Arizona State Museum, Tucson.Google Scholar
Shetty, D. K., Rosenfield, A. R., McGuire, P., Bansal, G. K., and Duckworth, W. H. 1980 Biaxial Flexure Tests for Ceramics. Ceramic Bulletin 59:11931197.Google Scholar
Shott, M. 1989 On Tool-Class Use Lives and the Formation of Archaeological Assemblages. American Antiquity 54:930.CrossRefGoogle Scholar
Steponaitis, V. P. 1984 Technological Studies of Prehistoric Pottery from Alabama: Physical Properties and Vessel Function. In The Many Dimensions of Pottery: Ceramics in Archaeology and Anthropology, edited by Van der Leeuw, S. E. and Pritchard, A. C., pp. 79127. Universiteit van Amsterdam, Amsterdam, Netherlands.Google Scholar
Tani, M. 1994 Why Should More Pots Break in Larger Households? Mechanisms Underlying Population Estimates from Ceramics. In Kalinga Ethnoarchaeology: Expanding Archaeological Method and Theory, edited by Longacre, W. A. and Skibo, J. M., pp. 5170. Smithsonian Institution Press, Washington, D.C. Google Scholar
Van Keuren, S., Stinson, S. L., and Abbott, D. R. 1997 Specialized Production of Hohokam Plain Ware Ceramics in the Lower Salt River Valley. Kiva 63:155175.CrossRefGoogle Scholar
Varien, M. D., and Mills, B. J. 1997 Accumulations Research: Problems and Prospects for Estimating Site Occupation Span. Journal of Archaeological Method and Theory 4:141191.CrossRefGoogle Scholar