Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-09T07:45:30.828Z Has data issue: false hasContentIssue false

Molecular typing of the major histocompatibility complex B microsatellite haplotypes in Cameroon chicken

Published online by Cambridge University Press:  02 February 2015

B.A. Hako Touko*
Affiliation:
Catholic University Institute of Buea (CUIB), Buea, Cameroon Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) hub, Nairobi, Kenya University of Dschang, Dschang, Cameroon
C.T. Keambou
Affiliation:
Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) hub, Nairobi, Kenya University of Buea, Buea, Cameroon
J.-M. Han
Affiliation:
Hankyong National University, Anseong, Korea
C. Bembidé
Affiliation:
Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) hub, Nairobi, Kenya Institut Centrafricain de Recherche Agronomique (ICRA), Bangui, Central African Republic
Robert A. Skilton
Affiliation:
Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) hub, Nairobi, Kenya
M. Ogugo
Affiliation:
International Livestock Research Institute (ILRI), Nairobi, Kenya
Y. Manjeli
Affiliation:
University of Dschang, Dschang, Cameroon
S. Osama
Affiliation:
Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) hub, Nairobi, Kenya
C.-Y. Cho
Affiliation:
International Livestock Research Institute (ILRI), Nairobi, Kenya
A. Djikeng
Affiliation:
Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) hub, Nairobi, Kenya
*
Correspondence to: B.A. Hako Touko, Catholic University Institute of Buea (CUIB), Buea, Cameroon. email: htouko@cuib-cameroon.net/hakoarnaud@yahoo.fr
Get access

Summary

The chicken major histocompatibility complex B (MHC-B) – a cluster of genes associated with natural disease resistance or susceptibility – has been investigated in experimental and inbred lines by serological typing. However, that method showed some weaknesses for its use on out breeds. This study aims to explore the genetic diversity of the MHC-B of Cameroon indigenous chicken through molecular typing with LEI0258 and MCW0371 microsatellite markers. MHC-B haplotypes of 290 chickens from four agro-ecological zones were identified and compared with published haplotypes. Alleles were analysed for genetic diversity and relationship among Cameroon chicken populations. Hypothetically new LEI0258 alleles and haplotypes were detected. Overall, polymorphism parameters were relatively high in the Cameroon western highlands. The analysis of molecular variance revealed great variability (80.00 percent) between individuals than among and within ecotypes. The inbreeding coefficients of overall populations (FIT), among population (FST) and within population (FIS) were 0.26, 0.04 and 0.22, respectively, and all were highly significant (P < 0.001). A UPGMA tree based on Nei's DA genetic distances showed a clear distinction between Cameroon and out-groups and a structuring of within-country populations into three clusters. There is a great genetic diversity of the MHC-B in Cameroon native chicken and also a need of sequencing of the identified alleles for an accurate identification prior to their assessment for natural disease resistance and responsiveness to vaccination.

Résumé

Le complexemajeur d'histocompatibilite B (CMH-B) de poule est un groupe de gènes impliquésdans la résistance aux maladies. Il a été typé chez les lignées consanguines de poule par la méthode sérologique. Cependant, l'application de cette méthode a montré des limites chez les populations naturelles non sélectionnées. Le but de cette étude est d’évaluer la diversité génétique du CMH-B de la poule locale du Cameroun à l'aide des marqueurs microsatellites LEI0258 et MCW0371. Les haplotypes B de 290 poulets échantillonnés dans 4 zones agroécologiques du Cameroun ont été identifiés et comparés aux haplotypes publiés. 42 allèles et des haplotypes hypothétiquement nouveaux du marqueur LEI0258 ont été détectés. En général, les paramètres du polymorphisme ont été plus élevés dans la zone des Hauts plateaux de l'Ouest. L'analyse de la variance moléculaire a révélé une plus grande variabilité (80.00 percent) entre les individus qu’à l'intérieur et entre les zones agroécologiques. Les coefficients de consanguinité dans la population (FIT), entre les sous-populations (FST) et dans les sous- populations (FIS) ont été faibles et tous significatifs (P < 0.001). L'arbre phylogénétique base de des distances génétiques DA de Nei a mis en évidence une distinction claire entre les populations de poules du Cameroun et les exotique sainsi qu'une structuration des populations locales en 3 groupes. Cette étude a révélée une grande diversité génétique du CMH-B de la poule locale du Cameroun ainsi que la nécessité de séquencer les nouveaux haplotypes pour leur identification plus précise relative à leur évaluation pour la détermination de leurs fonctions immunitaires.

Resumen

El complejo mayor de histocompatibilidad B de pollo (CMH-B) está vinculado a la respuesta inmunitaria. Ha sido bien estudiado en las líneas consanguíneas de pollo por el método de tipaje serológico. Sin embargo, la aplicación de este método a las poblaciones no seleccionadas de pollos ha demostrado serosos límites. El objetivo de este estudio ha sido de analizar el del CMH-B de la gallina local de Camerún por génotypage de 290 sujetos de 4 zonas agroecológicas del país, gracias a los marcadores micro-satélites LEI0258 y MCW0371. Alelos hipotéticamente nuevos han sido identificados, dentro de los cuales 4 recientemente puesto en evidencia en los altos bandejas del oeste Camerún para sus efectos sobre una producción elevada de anticuerpo contra la enfermedad de Newcastle. La variancia molecular de los efectos individuales ha sido superior (80.00 percent) a los efectos vinculados a la zona agro-ecológica. Los coeficientes de consanguinidad y de diferenciación han sido reducidos (débiles) pero significativos (P < 0.001) a los locus LEI0258 y MCW0371. El árbol filo genéticas basado sobre las distancias genéticas DA de Nei ha puesto en evidencia una discriminación limpia entre las gallinas locales de Camerún y las gallinas exóticas asiquen estructuración de los primeros en 3 sobre-poblaciones. Los resultados han confirmados la existencia de una gran diversidad genética del CMH-B en el seno de las poblaciones de gallina locales de Camerún sin embargo, sería necesaria secuenciar los alelos hipotéticamente nuevos para su identificación más preciso en visto de las pruebas relativos a su función dentro de las respuestas inmunitarias especificas a diversos patógenos.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacon, L.D., Hunt, H.D. & Cheng, H.H. 2001. Genetic resistance to Marek's disease. Current Topics in Microbiology and Immunology 255: 121141.Google ScholarPubMed
Biscarini, F., Bovenhuis, H., van Arendonk, J.A., Parmentier, H.K., Jungerius, A.P. & van der Poel, J.J. 2010. Across-line SNP association study of innate and adaptive immune response in laying hens. Animal Genetics 41(1): 2638.CrossRefGoogle ScholarPubMed
Buitenhuis, A.J., Rodenburg, T.B., Van Hierden, Y.M., Siwek, M., Cornelissen, S.J.B., Nieuwland, M.G.B., Crooijmans, R.P.M.A., Groenen, M.A.M., Koene, P., Korte, S.M., Bovenhuis, H. & Van der Poel, J.J. 2003. Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens. Poultry Science 82: 12151222.CrossRefGoogle ScholarPubMed
Buza, J.J. & Mwamhehe, H.A. 2001. Country report, Tanzania in: planning workshop on Newcastle disease control in village chicken. In R.G. Alder & P.B. Spradbrow, eds.’ SADC, Proceeding of an International workshop, Maputo, Mozambique, 6–9 March 2000, ACIAR Proceedings No. 103, pp. 3842.Google Scholar
Chazara, O. 2010. Diversité structural etfonctionnelle du CMH chez les poulets. Département de Génétiqueanimale, Institut Agroparistech, Paris, France, pp. 13–14 et 54–158. (Thèse de PhD).Google Scholar
Cotter, P.F., Taylor, R.L. Jr. & Abplanalp, H. 1998. B-Complex associated immunity to Salmonella enteritidis challenge in congenic chickens. Poultry Science 77: 18461851.CrossRefGoogle ScholarPubMed
Felsenstein, J. 2009. PHYLIP Ver 3.69, the PhyLogeny Inference Package. University of Washington. (available at http://evolution.gs.washington.edu/phylip.html).Google Scholar
Fotsa, J.C., Poné, K.D., Bordas, A., Tixier-Boichard, M. & Rognon, X. 2011. Assessment of the genetic diversity of Cameroon indigenous chickens by the use of microsatellites. Livestock Research for Rural Development 23, Article 118. (available at http://www.lrrd.org/lrrd23/5/fots23118.htm).Google Scholar
Fulton, J.E. 2012. Genomic selection for poultry breeding. Animal Frontiers 2(1): 3036, doi:10.2527/af.2011-0028.CrossRefGoogle Scholar
Fulton, J.E., Young, E.E. & Bacon, L.D. 1995. Chicken MHC alloantiserum cross-reactivity analysis by hemagglutination and flow cytometry. Immunogenetics 43: 277288.Google Scholar
Fulton, J.E., Juul-Madsen, H.R., Ashwell, C.M., McCarron, A.M., Arthur, J.A., O'Sullivan, N.P. & Taylor, R. Jr. 2006. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 58: 407421.CrossRefGoogle ScholarPubMed
Goudet, J. 2001. FSTAT, a program for Windows (95 and above) to estimate and test gene diversity and fixation indexes (Ver 2.9.3). (available at http://www.unil.ch/izea/softwares/fstat.html).Google Scholar
Guo, S.W. & Thompson, E.A. 1992. Performing the exact test of Hardy Weindberg proportions for multiple alleles. Biometrics 48: 361372.CrossRefGoogle ScholarPubMed
HakoTouko, B.A., Keambou, T.C., Han-Jun, M., Bembide, C., Cho, C.Y., Skilton, R.A., Djikeng, A., Ogugo, M., Manjeli, Y., Tebug, T.T., Zoli, P.A. & Osama, S. 2013. The major histocompatibility complex B and QTL microsatellite alleles of favorable effect on antibody response against the Newcastle disease. International Journal of Genetics Research 1(1): 18. (available at http://www.ijscience.com/Recent_Advances_in_Genetics/archive/Issue-1-2013.htm).Google Scholar
Haoua, M. 2010. Caractérisationmorpho-biométrique de la poule locale de la zone soudanosahélienne du Cameroun. , Département des Productions Animales, Biotechnologieet Productions Animales, Université de Dschang, Cameroon, 69 pp. (Thèse de Master of Science).Google Scholar
Harlt, D.L. 1980. Principles of population genetics, 1st edition. Sunderland, Massachusetts, Sinauer Associates Publisher, Inc., 487 p.Google Scholar
Jie, H. & Liu, Y.P. 2011. Breeding for disease resistance in poultry: opportunities with challenges. World's Poultry Science of Journal 67(4): 687695.CrossRefGoogle Scholar
Juul-Madsen, H.R., Dalgaard, T.S., Salomonsen, J. & Heller, E.D. 2006. Genetic resistance with focus on major histocompatibility complex. In Eterradossi, N., de Wit, S., Mundt, E., Raue, R. & van den Berg, T. (eds). A laboratory manual of methods in IBDV and CAV, Vainio O (EiC). (available at http://www.agrsci.dk/media/webdav/filer/sve/smf/genetic_resistance).Google Scholar
Keambou, T.C. 2013. The biomolecular and phenotypical diversity of the local chicken Gallus gallus of Cameroon. Department of Animal Production, University of Dschang, Cameroon. (PhD thesis).Google Scholar
Keambou, T.C., Manjeli, Y., Tchoumboue, J., Teguia, A. & Iroume, R.N. 2007. Morphological and biometrical characterization of the local chicken of the western highlands of Cameroon. Livestock Research for Rural Development 19, Article 107. (available at http://www.lrrd.org/lrrd19/8/keam19107.htm).Google Scholar
Keambou, T.C., HakoTouko, B.A., Bembide, C., Ngono, E.P. & Manjeli, Y. 2013. Effect of genetic type and sex on reproductive, growth, survival performance and thermal tolerance index of the local chicken (Gallus gallus) of the Western Highlands of Cameroon. International Journal of Poultry Science 12(2): 8089.CrossRefGoogle Scholar
Keambou, T.C., Hako, B.A., Ommeh, S., Bembide, C., Ngono, E.P., Manjeli, Y., Wamonje, F., Nzuki, I., Wanjala, B., Wamalwa, M., Cho, C.Y., Skilton, R.A. & Djikeng, A. 2014. Genetic diversity of the Cameroon indigenous chicken ecotypes. International Journal of Poultry Science 13(5): 279291.CrossRefGoogle Scholar
Kroemer, G., Guillemot, F. & Auffray, C. 1990. Genetic organization of the chicken MHC. Journal of Immunology Research 9: 819.CrossRefGoogle ScholarPubMed
Lamont, S.J., Bolin, C. & Cheville, N. 1987. Genetic resistance to fowl cholera is linked to the major histocompatibility complex. Immunogenetics 25: 284289.CrossRefGoogle ScholarPubMed
Lwelamira, J., Kifaro, G.C., Gwakisa, P.S. & Msoffe, P.L.M. 2008. Association of LEI0258 microsatellite alleles with antibody response against Newcastle disease virus vaccine and body weight in two Tanzania chicken ecotypes. African Journal of Biotechnology 7(6): 714. (available at http://www.academicjournals.org/AJB).Google Scholar
McBride, R.A., Cutting, J.A., Schierman, L.W., Strebel, F.R. & Watanabe, D.H. 1981. MHC gene control of growth of avian sarcoma virus-induced tumours in chickens: a study on the role of virus strain. Journal of Immunogenetics 8(3): 207214.CrossRefGoogle Scholar
McConnell, S.K., Dawson, D.A., Wardle, A. & Burke, T. 1999. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken. Animal Genetics 30: 183189.CrossRefGoogle Scholar
Moula, N., Farnir, F., Salhi, A., Iguer-Ouada, M., Leroy, P. & Antoine-Moussiaux, N. 2012. Backyard poultry in Kabylie (Algeria): from an indigenous chicken to a local poultry breed? Animal Genetic Resources 50: 8796. Food and Agricultural Organization of the United Nations, 2012. doi:10.1017/S207863361200001X.CrossRefGoogle Scholar
Mtileni, B.J., Muchadeyi, F.C., Maiwashe, A., Chimonyo, M. & Dzama, K. 2012. Conservation and utilization of indigenous chicken in Southern Africa. World's Poultry Science Journal 68: 727747.CrossRefGoogle Scholar
Muir, W.M., Wong, G.K., Zhang, Y., Wang, J., Groenen, M.A., Crooijmans, R.P., Megens, H.J., Zhang, H., Okimoto, R., Vereijken, A., Jungerius, A., Albers, G.A., Lawley, C.T., Delany, M.E., MacEachern, S. & Cheng, H.H. 2008. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings of National Academy of Science of the United States of America 105: 1731217317.CrossRefGoogle ScholarPubMed
Nei, M. 1972. Genetic distance between populations. Animal Nature 106: 283292.Google Scholar
Park, S.D.E. 2001. The Excel Microsatellite Toolkit: excel tools for diploid or haploid microsatellite data. (available at http://animalgenomics.ucd.ei).Google Scholar
Taylor, R.L. Jr. 2004. Major histocompatibility (B) complex control of response against Rous sarcomas. Poultry Science 83: 636649.CrossRefGoogle ScholarPubMed
Teleu, N.E.T. & Ngatchou, A. 2006. Revue du secteuravicole au Cameroun, FAO, 2006. (available at ftp://ftp.fao.org/docrep/fao/011/ai356f/ai356f00.pdf).Google Scholar
Weir, B.S. & Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 13581370.Google ScholarPubMed
Yonash, N., Cheng, H.H., Hillel, J. & Cahaner, A. 2001. DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poultry Science 80: 2228.CrossRefGoogle ScholarPubMed
Yoo, B.H. & Sheldon, B.L. 1992. Association of the major histocompatibility complex with avian leukosis virus infection in chickens. British Poultry Science 33: 613620.CrossRefGoogle ScholarPubMed