Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T19:14:31.570Z Has data issue: false hasContentIssue false

De-risking in multi-state life and health insurance

Published online by Cambridge University Press:  22 April 2024

Susanna Levantesi
Affiliation:
Sapienza University of Rome, Rome, Italy
Massimiliano Menzietti
Affiliation:
University of Salerno, Fisciano, Italy
Anna Kamille Nyegaard*
Affiliation:
University of Copenhagen, Copenhagen, Denmark
*
Corresponding author: Anna Kamille Nyegaard; Email: akp@math.ku.dk

Abstract

The calculation of life and health insurance liabilities is based on assumptions about mortality and disability rates, and insurance companies face systematic insurance risks if assumptions about these rates change. In this paper, we study how to manage systematic insurance risks in a multi-state setup by considering securities linked to the transition intensities of the model. We assume there exists a market for trading two securities linked to, for instance, mortality and disability rates, the de-risking option and the de-risking swap, and we describe the optimization problem to find the de-risking strategy that minimizes systematic insurance risks in a multi-state setup. We develop a numerical example based on the disability model, and the results imply that systematic insurance risks significantly decrease when implementing de-risking strategies.

Type
Original Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baione, F., Conforti, C., Levantesi, S., Menzietti, M., & Tripodi, A. (2016). Assicurazioni sulla salute: caratteristiche, modelli attuariali e basi tecniche, chapter 4, Il Mulino (pp. 123196). ISBN 978-88-15-26084-0.Google Scholar
Biffis, E. (2005). Affine processes for dynamic mortality and actuarial valuations. Insurance, Mathematics and Economics, 37(3), 443468.CrossRefGoogle Scholar
Blake, D. (2018). Longevity: A new asset class. Journal of Asset Management, 19(5), 278300. doi: 10.1057/s41260-018-0084-9.CrossRefGoogle Scholar
Blake, D., Cairns, A. J. G., & Dowd, K. (2006). Living with mortality: Longevity bonds and other mortality-linked securities. British Actuarial Journal, 12(1), 153197.CrossRefGoogle Scholar
Blake, D., Cairns, A. J. G., Dowd, K., & Kessler, A. R. (2019). Still living with mortality: The longevity risk transfer market after one decade. British Actuarial Journal, 24. ISSN 1357-3217.CrossRefGoogle Scholar
Buchardt, K., Furrer, C., & Steffensen, M. (2019). Forward transition rates. Finance and Stochastics, 23(4), 975999.CrossRefGoogle Scholar
Christiansen, M. C. (2013). Safety margins for unsystematic biometric risk in life and health insurance. Scandinavian Actuarial Journal, 2013(4), 286323. doi: 10.1080/03461238.2011.618545.CrossRefGoogle Scholar
Christiansen, M. C., & Niemeyer, A. (2015). On the forward rate concept in multi-state life insurance. Finance and Stochastics, 19(2), 295327. doi: 10.1007/s00780-014-0244-9.CrossRefGoogle Scholar
Cox, S. H., & Lin, Y. (2007). Natural hedging of life and annuity mortality risks. North American Actuarial Journal, 11(3), 115. doi: 10.1080/10920277.2007.10597464.CrossRefGoogle Scholar
Dahl, M. (2004). Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts. Insurance, Mathematics and Economics, 35(1), 113136.CrossRefGoogle Scholar
Dahl, M., & Møller, T. (2006). Valuation and hedging of life insurance liabilities with systematic mortality risk. Insurance: Mathematics and Economics, 39(2), 193217. doi: 10.1016/j.insmatheco.2006.02.007. https://www.sciencedirect.com/science/article/pii/S0167668706000473. ISSN 0167-6687.Google Scholar
D’Amato, V., Levantesi, S., & Menzietti, M. (2020). De-risking long-term care insurance. Soft Computing (Berlin, Germany), 24(12), 86278641.Google Scholar
Henriksen, L. F. B., & Møller, T. (2015). Local risk-minimization with longevity bonds. Applied Stochastic Models in Business and Industry, 31(2), 241263. doi: 10.1002/asmb.2028.CrossRefGoogle Scholar
Hoem, J. M. (1969). Markov chain models in life insurance. Blätter (Deutsche Gesellschaft für Versicherungs- und Finanzmathematik), 9(2), 91107.Google Scholar
Huang, Z., Sherris, M., Villegas, A. M. & Ziveyi, J. (2022). Modelling usa age-cohort mortality: A comparison of multi-factor affine mortality models. Risks, 10(9), 183. doi: 10.3390/risks10090183.CrossRefGoogle Scholar
Jevtić, P., Luciano, E., & Vigna, E. (2013). Mortality surface by means of continuous time cohort models. Insurance, Mathematics & Economics, 53(1), 122133.CrossRefGoogle Scholar
Levantesi, S., & Menzietti, M. (2017). Natural hedging in long-term care insurance. ASTIN Bulletin, 48(1), 142. doi: 10.1017/asb.2017.29.Google Scholar
Lin, Y., & Cox, S. H. (2005). Securitization of mortality risks in life annuities. The Journal of Risk and Insurance, 72(2), 227252.CrossRefGoogle Scholar
Lin, Y., MacMinn, R. D., & Tian, R. (2015). De-risking defined benefit plans. Insurance, Mathematics and Economics, 63, 5265.CrossRefGoogle Scholar
Luciano, E., Spreeuw, J., & Vigna, E. (2008). Modelling stochastic mortality for dependent lives. Insurance, Mathematics and Economics, 43(2), 234244.CrossRefGoogle Scholar
Maegebier, A. H. (2015). Securitization of disability risk via bonds and swaps. The Journal of Risk Finance, 16(4), 407424. doi: 10.1108/JRF-11-2014-0166.CrossRefGoogle Scholar
Norberg, R. (1991). Reserves in life and pension insurance. Scandinavian Actuarial Journal, 1991(1), 324. doi: 10.1080/03461238.1991.10557357.CrossRefGoogle Scholar
Norberg, R. (1999). A theory of bonus in life insurance. Finance and Stochastics, 3(4), 373390.CrossRefGoogle Scholar
Nyegaard, A. K. (2022). Natural hedging in continuous time life insurance. Under review.CrossRefGoogle Scholar
Pitacco, E. (2009). Modelling longevity dynamics for pensions and annuity business. Oxford University Press.CrossRefGoogle Scholar
Promislow, S. D. (2015). Fundamentals of actuarial mathematics (3 ed.). John Wiley & Sons.Google Scholar
Wang, J. L., Huang, H. C., Yang, S. S., & Tsai, J. T. (2010). An optimal product mix for hedging longevity risk in life insurance companies: The immunization theory approach. The Journal of Risk and Insurance, 77(2), 473497.CrossRefGoogle Scholar
Zeddouk, F., & Devolder, P. (2020). Mean reversion in stochastic mortality: Why and how? European Actuarial Journal, 10(2), 499525. doi: 10.1007/s13385-020-00237-y.CrossRefGoogle Scholar