Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T11:19:53.570Z Has data issue: false hasContentIssue false

Isolation and characterization of Antarctic psychrotroph Streptomyces sp. strain INACH3013

Published online by Cambridge University Press:  13 July 2016

Paris Leonardo Lavin*
Affiliation:
Laboratorio de Biorrecursos, Instituto Antártico Chileno, Punta Arenas, Chile
Sheau Ting Yong
Affiliation:
Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
Clemente M.V.L. Wong
Affiliation:
Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia National Antarctic Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
Mario De Stefano
Affiliation:
Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, II University of Naples, Italy

Abstract

An actinobacterial strain with antimicrobial activity, INACH3013, was isolated from soil collected from Antarctica. The taxonomic status of the isolate was established using a polyphasic approach. The strain was identified as belonging to the genus Streptomyces based on the scanning electron microscopic observation and partial 16S rRNA gene sequence analysis. The sequence analysis revealed that strain INACH3013 is closely related to Streptomyces fildesensis (99.8%), S. beijiangensis (98.1%) and S. purpureus (97.2%). A phylogenetic tree constructed using the partial 16S rRNA gene sequences of strain INACH3013 and closely related strains revealed that INACH3013 fell into the same subclade as S. fildesensis and S. purpureus. Strain INACH3013 was observed to be psychrotolerant, slightly halotolerant (up to 5% NaCl) and capable of inhibiting the growth of seven Gram-negative and eight Gram-positive foodborne pathogens. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of the strain is KJ624755.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M. & 40 others. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141147.Google Scholar
Bérdy, J. 2005. Bioactive microbial metabolites - a personal view. Journal of Antibiotics, 58, 126.Google Scholar
De Souza, M.J., Nair, S., Bharathi, P.L. & Chandramohan, D. 2006. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology, 15, 379384.Google Scholar
Doroghazi, J.R., Albright, J.C., Goering, A.W., Ju, K.S., Haines, R.R., Tchalukov, K.A., Labeda, D.P., Kelleher, N.L. & Metcalf, W.W. 2014. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nature chemical biology, 10, 963968.CrossRefGoogle ScholarPubMed
Edwards, J.A. & Smith, R.I.L. 1988. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the Maritime Antarctic. British Antarctic Survey Bulletin, No. 81, 4363.Google Scholar
Encheva-Malinova, M., Stoyanova, M., Avramova, H., Pavlova, Y., Gocheva, B., Ivanova, I. & Moncheva, P. 2014. Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnology & Biotechnological Equipment, 28, 721727.Google Scholar
Gerber, N.N. & Lechevalier, H.A. 1965. Geosmin, an earthly-smelling substance isolated from actinomycetes. Applied Microbiology, 13, 935938.Google Scholar
Hernández, J., Stedt, J., Bonnedahl, J., Molin, Y., Drobni, M., Calisto-Ulloa, N., Gomez-Fuentes, C., Astorga-Espana, M.S., Gonzalez-Acuna, D., Waldenstrom, J., Blomqvist, M. & Olsena, B. 2012. Human-associated extended-spectrum β-lactamase in the Antarctic. Applied and Environmental Microbiology, 78, 20562058.Google Scholar
Jiang, C. & Xu, L. 1993. Actinomycete diversity in unusual habitats. Actinomycetes, 4, 4757.Google Scholar
Kennedy, A.C. 1999. Bacterial diversity in agroecosystems. Agriculture Ecosystems & Environment, 74, 6576.Google Scholar
Kharel, M.K., Shepherd, M.D., Nybo, S.E., Smith, M.L., Bosserman, M.A. & Rohr, J. 2010. Isolation of Streptomyces species from soil. Current Protocols in Microbiology, 10, 10.1002/9780471729259.mc10e04s19.Google Scholar
Lam, K.S. 2006. Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9, 245251.Google Scholar
Larsen, H. 1986. Halophilic and halotolerant microorganisms – an overview and historical perspective. FEMS Microbiology Letters, 39, 37.Google Scholar
Lazzarini, A., Cavaletti, L., Toppo, G. & Marinelli, F. 2001. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 78, 399405.CrossRefGoogle Scholar
Li, J., Tian, X.P., Zhu, T.J., Yang, L.L. & Li, W.J. 2011. Streptomyces fildesensis sp. nov., a novel streptomycete isolated from Antarctic soil. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 100, 537543.Google Scholar
Li, W.J., Zhang, L.P., Xu, P., Cui, X.L., Lu, Z.T., Xu, L.H. & Jiang, C.L. 2002. Streptomyces beijiangensis sp. nov., a psychrotolerant actinomycete isolated from soil in China. International Journal of Systematic and Evolutionary Microbiology, 52, 16951699.Google Scholar
Miller, R.V., Gammon, K. & Day, M.J. 2009. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian Journal of Microbiology, 55, 3745.CrossRefGoogle ScholarPubMed
Moncheva, P., Tishkov, S., Dimitroval, N., Chipeva, V., Antonova-Nikolova, S. & Bogatzevska, N. 2002. Characteristics of soil actinomycetes from Antarctica. Journal of Culture Collections, 3, 314.Google Scholar
Okoro, C.K., Brown, R., Jones, A.L., Andrews, B.A., Asenjo, J.A., Goodfellow, M. & Bull, A.T. 2009. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 95, 121133.Google Scholar
Perron, G.G., Whyte, L., Turnbaugh, P.J., Goordial, J., Hanage, W.P., Dantas, G. & Desai, M.M. 2015. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE, 10, 10.1371/journal.pone.0069533.Google Scholar
Poirel, L., Corvec, S., Rapoport, M., Mugnier, P., Petroni, A., Pasteran, F., Faccone, D., Galas, M., Drugeon, H., Cattoir, V. & Nordmann, P. 2007. Identification of the novel narrow-spectrum β-lactamase SCO-1 in Acinetobacter spp. from Argentina. Antimicrobial Agents and Chemotherapy, 51, 21792184.Google Scholar
Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N. & Chandler, R.E. 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of bacteriology, 154, 12221226.Google Scholar
Ross, J.C. & Vincent, W.F. 1998. Temperature dependence of UV radiation effects on Antarctic Cyanobacteria. Journal of Phycology, 34, 118125.Google Scholar
Saadoun, I. & Gharaibeh, R. 2003. The Streptomyces flora of Badia region of Jordan and its potential as a source of antibiotics active against antibiotic-resistant bacteria. Journal of Arid Environments, 53, 365371.Google Scholar
Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S. & Ushida, K. 2013. Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, 5, 127134.Google Scholar
Seipke, R.F. 2015. Strain-level diversity of secondary metabolism in Streptomyces albus . PloS ONE, 10, 10.1371/journal.pone.0116457.Google Scholar
Shirling, E.B. & Gottlieb, D. 1966. Methods for characterization of Streptomyces species. International Journal of Systematic and Evolutionary Microbiology, 16, 313340.Google Scholar
Smith, R.I.L. 1991. Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica. Grana, 30, 313324.Google Scholar
Srivibool, R. & Sukchotiratana, M. 2006. Bioperspective of actinomycetes isolates from coastal soils: a new source of antimicrobial producers. Songklanakarin Journal of Science and Technology, 28, 493499.Google Scholar
Stackebrandt, E., Rainey, F.A. & Ward-Rainey, N.L. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic Bacteriology, 47, 479491.Google Scholar
Subramani, R. & Aalbersberg, W. 2013. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Applied Microbiology and Biotechnology, 97, 92919321.Google Scholar
Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512526.Google ScholarPubMed
Thakur, D., Yadav, A., Gogoi, B.K. & Bora, T.C. 2007. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. Journal De Mycologie Medicale, 17, 242249.CrossRefGoogle Scholar
Tomova, I., Stoilova-Disheva, M. & Vasileva-Tonkova, E. 2014a. Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, East Antarctica. Polish Polar Research, 35, 593607.Google Scholar
Tomova, I., Gladka, G., Tashyrev, A. & Vasileva-Tonkova, E. 2014b. Isolation, identification and hydrolytic enzymes production of aerobic heterotrophic bacteria from two Antarctic islands. International Journal of Environmental Science, 4, 614625.Google Scholar
Van den Burg, B. 2003. Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6, 213218.Google Scholar
Vincent, W.F., Gibson, J.A.E., Pienitz, R., Villeneuve, V., Broady, P.A., Hamilton, P.B. & Howard-Williams, C. 2000. Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball earth. Naturwissenschaften, 87, 137141.Google Scholar
Wallace, R.J., Vance, P., Weissfeld, A. & Martin, R.R. 1978. Beta-lactamase production and resistance to beta-lactam antibiotics in Nocardia. Antimicrobial Agents and Chemotherapy, 14, 704709.Google Scholar
Wong, C.M.V.L., Tam, H.K., Alias, S.A., González, M., González-Rocha, G. & Domínguez-Yévenes, M. 2011. Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Polish Polar Research, 32, 314.Google Scholar
Yoshida, A., Seo, Y., Suzuki, S., Nishino, T., Kobayashi, T., Hamada-Sato, N., Kogure, K. & Imada, C. 2008. Actinomycetal community structures in seawater and freshwater examined by DGGE analysis of 16S rRNA gene fragments. Marine Biotechnology, 10, 554563.Google Scholar