Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T21:47:32.874Z Has data issue: false hasContentIssue false

Revisiting the bipolarity of Roaldia revoluta (Mitt.) P.E.A.S. Câmara & Carv.-Silva (Bryophyta, Pylaisiaceae)

Published online by Cambridge University Press:  04 April 2023

Paulo E.A.S. Câmara*
Affiliation:
Universidade de Brasília, Botany Dept, Brasília, Brazil
Micheline Carvalho-Silva
Affiliation:
Universidade de Brasília, Botany Dept, Brasília, Brazil
Daiane Valente Valente
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia Farroupilha - Campus São Vicente do Sul. Rua 20 de Setembro, 2616 - CEP 97420-000 - São Vicente do Sul - Rio Grande do Sul/RS, Brazil
Diego Knop Henriques
Affiliation:
Universidade de Brasília, Botany Dept, Brasília, Brazil
Eduardo Toledo De Amorim
Affiliation:
Centro Nacional de Conservação da Flora/Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
Wellington Santos Fava
Affiliation:
Laboratory of Ecology and Evolutionary Biology, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
Hans (J.D.) Kruijer
Affiliation:
Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands Leiden University, Leiden, The Netherlands
Michael Stech
Affiliation:
Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands Leiden University, Leiden, The Netherlands

Abstract

The occurrence of species in both polar regions (bipolarity) is a common phenomenon in the Antarctic flora. Considering the high morphological variation in polar regions due to extreme conditions, the use of molecular tools is indispensable for testing whether Arctic and Antarctic populations indeed belong to the same species. However, few phylogeographic studies of bipolar bryophytes have been conducted so far, especially when comparing molecular and morphological variation. Here, we assess the bipolarity and intraspecific variation of Roaldia revoluta, a strictly bipolar species of pleurocarpous mosses. Phylogenetic analyses based on ITS sequences clearly resolve R. revoluta as monophyletic and confirm its bipolar distribution pattern. Low intraspecific molecular variation in the markers ITS/26S and rpl16 was observed, and most specimens from both polar regions belong to a single haplotype, making it difficult to infer the origin and dispersal routes between both polar regions of R. revoluta. Morphometric analysis furthermore suggests that there are no significant morphological differences among populations from both polar regions and that morphological variation is mainly influenced by local environmental conditions. Our data do not unequivocally support the recent separation of the former intraspecific taxon Hypnum revolutum var. dolomiticum at the species level as Roaldia dolomitica.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, E.T., Carvalho, F.A., Santos, N.D. & Luizi-Ponzo, A.P. 2017. Distribution of bryophytes in south-eastern Brazil: an approach on floristic similarity and environmental filtering. Cryptogamie Bryologie, 38, 317.CrossRefGoogle Scholar
Anderson, L.E. 1954. Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist, 57, 242244.CrossRefGoogle Scholar
Ando, H. 1972. Distribution and speciation in the genus Hypnum in the circum-Pacific region. Journal of the Hattori Botanical Laboratory 35, 6898.Google Scholar
Ando, H. 1973. Studies on the genus Hypnum (II). Journal of Science of the Hiroshima University Series B, Div. 2 (Botany), 14, 165207.Google Scholar
Ando, H. & Matteri, C.E. 1982. Patagonian bryophytes. 7. Hypnum revolutum (Mitt.) Lindb. new to South America, with notes on the Hypnum species known from the Transecta zone, S Argentina. Lindbergia, 8, 6064.Google Scholar
Biersma, E.M., Jackson, J.A., Hyvönen, J., Linse, K., Griffiths, H. & Convey, P. 2017. Global biogeographic patterns in bipolar moss species. Royal Society Open Science, 4, 10.1098/rsos.170147.CrossRefGoogle ScholarPubMed
Biersma, E.M., Jackson, J.A., Bracegirdle, T.J., Griffiths, H., Linse, K. & Convey, P. 2018a. Low genetic variation between South American and Antarctic populations of the bank-forming moss Chorisodontium aciphyllum (Dicranaceae). Polar Biology, 41, 599610.CrossRefGoogle Scholar
Biersma, E.M., Jackson, J.A., Stech, M., Griffiths, H., Linse, K. & Convey, P. 2018b. Molecular data suggest long-term in situ Antarctic persistence within Antarctica's most speciose plant genus, Schistidium. Frontiers in Ecology and Evolution, 6, 10.3389/fevo.2018.00077.CrossRefGoogle Scholar
Bijlsma, R.J., Kruijer, J.D. & Stech, M. 2020. Ptychostomum touwii, a new bryophyte species distinguished from Ptychostomum rubens by iterative morpho-molecular analysis, and a note on Bryum microerythrocarpum. Gorteria, 42, 5665.Google Scholar
Biomatters. 2010. Geneious v5.3.6. Retrieved from https://www.geneious.comGoogle Scholar
Buryová, B. & Shaw, A.J. 2005. Phenotypic plasticity in Philonotis fontana (Bryopsida: Bartramiaceae). Journal of Bryology, 27, 1322.CrossRefGoogle Scholar
Câmara, P.E.A.S., Carvalho-Silva, M. & Stech, M. 2021. Antarctic bryophyte research - current state and future directions. Bryophyte Diversity & Evolution, 43, 221233.CrossRefGoogle Scholar
Câmara, P.E.A.S., Carvalho-Silva, M., Henriques, D.K., Poveda, D.R., Gallego, M.T. & Stech, M. 2018a. Pylaisiaceae Schimp. (Bryophyta) revisited. Journal of Bryology, 40, 261264.CrossRefGoogle Scholar
Câmara, P., Soares, A., Henriques, D., Peralta, D., Bordin, J., Carvalho-Silva, M., & Stech, M. 2019. New insights into the species diversity of Bartramia Hedw. (Bryophyta) in Antarctica. Antarctic Science, 31, 208215.CrossRefGoogle Scholar
Câmara, P.E.A.S., Valente, D.V., Amorim, E.T., Henriques, D.K., Carvalho-Silva, M., Convey, P. & Stech, M. 2018b. Integrative analysis of intraspecific diversity in Roaldia revoluta (Mitt.) P.E.A.S. Câmara & M. Carvalho-Silva (Bryophyta) in Antarctica. Polar Biology, 42, 485496.CrossRefGoogle Scholar
Clement, M., Posada, D. & Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 16571659.CrossRefGoogle ScholarPubMed
Cox, C.J., Goffinet, B., Shaw, A.J. & Boles, S.B. 2004. Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Systematic Botany, 29, 234250.CrossRefGoogle Scholar
Daniëls, F.J.A., Gillespie, L.J. & Poulin, M. 2013. Plants. In Arctic biodiversity assessment. Akureyri: Conservation of Arctic Flora and Fauna (CAFF), 310353.Google Scholar
Doyle, J.J. & Doyle, J.L. 1987. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 1115.Google Scholar
Ellis, L.T., Asthana, A.K., Gupta, R., Nath, V., Sahu, V., Bednarek-Ochyra, H., et al. 2013a. New national and regional bryophyte records, 34. Journal of Bryology 35, 6270.CrossRefGoogle Scholar
Ellis, L.T., Bednarek-Ochyra, H., Ochyra, R., Benjumea, M.J, Saïs, L.V., Capparós, R., et al. 2013b. New national and regional bryophyte records, 35. Journal of Bryology 34, 129139.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783783.CrossRefGoogle ScholarPubMed
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 19.Google Scholar
Hedenäs, L. 2012. Global phylogeography in Sanionia uncinata (Amblystegiaceae: Bryophyta). Botanical Journal of the Linnean Society, 168, 1942.CrossRefGoogle Scholar
Hedenäs, L. 2014a. Intraspecific genetic variation in selected mosses of Scandinavian interglacial refugia suggests contrasting distribution history patterns. Botanical Journal of the Linnean Society, 176, 295310.CrossRefGoogle Scholar
Hedenäs, L. 2014b. Southern Scandinavian lowland populations of Rhytidium rugosum (Bryophyta, Rhytidiaceae) differ significantly from those in the mountains. Journal of Bryology, 36, 114.CrossRefGoogle Scholar
Hedenäs, L. & Watling, M.C. 2005. Bryophyte flora of Uganda. 5. Hypnaceae (part 2). Journal of Bryology, 27, 10.1179/037366805X53077.Google Scholar
Hebel, I., Dacasa Rüdinger, M.C., Jaña, R.A. & Bastias, J. 2018. Genetic structure and gene flow of moss Sanionia uncinata (Hedw.) Loeske in Maritime Antarctica and Southern-Patagonia. Frontiers in Ecology and Evolution, 6, 10.3389/fevo.2018.00152.CrossRefGoogle Scholar
Hebel, I., Galleguillos, C., Jaña, R. & Dacasa Rüdinger, M.D.C. 2012. Early knowledge of Antarctica's vegetation: expanding past and current evidence. Revista Chilena de Historia Natural, 85, 409418.CrossRefGoogle Scholar
Hesse, C., Jalink, L., Stech, M. & Kruijer, J.D. 2012. Contributions to the moss flora of Edgeøya and Barentsøya, Svalbard (Norway). Polish Botanical Journal, 57, 167179.Google Scholar
Higgins, D.G. & Sharp, P.M. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73, 237244.CrossRefGoogle ScholarPubMed
Kučera, J., Kuznetsova, O.I., Manukjanová, A. & Ignatov, M.S. 2019. A phylogenetic revision of the genus Hypnum: towards completion. Taxon, 68, 10.1002/tax.12095.Google Scholar
Lamb, I.M. 1970. Antarctic terrestrial plants and their ecology. In Holdgate, M.W., ed. Antarctic ecology, 2nd edition. London: Academic Press, 733751.Google Scholar
Lang, A., Bocksberger, G. & Stech, M. 2015. Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta). Molecular Phylogenetics and Evolution, 92, 217225.CrossRefGoogle ScholarPubMed
Lang, A., Kruijer, J.D. & Stech, M. 2014. DNA barcoding of arctic bryophytes - an example from the moss genus Dicranum. Polar Biology, 37, 11571169.CrossRefGoogle Scholar
Lewis, L.R., Rozzi, R. & Goffinet, B. 2014. Direct long-distance dispersal shapes a New World amphitropical disjunction in the dispersal-limited dung moss Tetraplodon (Bryopsida: Splachnaceae). Journal of Biogeography, 41, 23852395.CrossRefGoogle Scholar
Lewis, L.R., Biersma, E.M., Carey, S.B., Holsinger, K., McDaniel, S.F., Rozzi, R. & Goffinet, B. 2017. Resolving the northern hemisphere source region for the long distance dispersal event that gave rise to the South American endemic dung moss Tetraplodon fuegianus. American Journal of Botany, 104, 10.3732/ajb.1700144.CrossRefGoogle Scholar
Longton, R. 1988. Biology of polar bryophytes and lichens. Cambridge: Cambridge University Press, 391 pp.CrossRefGoogle Scholar
McDaniel, S.F. & Shaw, A.J. 2003. Phylogeographic structure and cryptic speciation in the trans-Antarctic moss Pyrrhobryum mnioides. Evolution, 57, 205215.Google ScholarPubMed
Medina, N.G., Albertos, B., Lara, F., Mazimpaka, V., Garilleti, R., Draper, D. & Hortal, J. 2014. Species richness of epiphytic bryophytes: drivers across scales on the edge of the Mediterranean. Ecography, 37, 8093.CrossRefGoogle Scholar
Müller, K. 2004. SeqState - primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics, 4, 6569.Google Scholar
Müller, K., Quandt, D., Müller, J. & Neinhuis, C. 2006. PhyDE®: Phylogenetic Data Editor, version 0.995. Retrieved from www.phyde.deGoogle Scholar
Ochyra, R., Lewis Smith, R.I. & Bednarek- Ochyra, H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 704 pp.Google Scholar
Pereira, M.R., Dambros, C.D.E.S. & Zartman, C.E. 2013. Will the real Syrrhopodon leprieurii please stand up? The influence of topography and distance on phenotypic variation in a widespread Neotropical moss. The Bryologist, 116, 5864.CrossRefGoogle Scholar
Piñeiro, R., Popp, M., Hassel, K., Listl, D., Westergaard, K.B., Flatberg, K.I., et al. 2012, Circumarctic dispersal and long-distance colonization of South America: the moss genus Cinclidium. Journal of Biogeography, 39, 10.1111/j.1365-2699.2012.02765.x.CrossRefGoogle Scholar
Pisa, S., Werner, O., Vanderpoorten, A., Magdy, M. & Ros, R.M. 2013. Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae). American Journal of Botany, 100, 20002008.CrossRefGoogle ScholarPubMed
Posada, D. 2008. jModeltest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 12531256.CrossRefGoogle ScholarPubMed
Rambaut, A. & Drummond, A.J. 2013. Tracer v1.4. Retrieved from http://beast.bio.ed.ac.uk/TracerGoogle Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Ohna, S.H., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539542.CrossRefGoogle ScholarPubMed
Saługa, M., Ochyra, R., Żarnowiec, J. & Ronikier, M. 2018. Do Antarctic populations represent local or widespread phylogenetic and ecological lineages? Complicated fate of bipolar moss concepts with Drepanocladus longifolius as a case study. Organisms Diversity and Evolution, 18, 10.1007/s13127-018-0372-8.CrossRefGoogle Scholar
Schlesak, S., Hedenäs, L., Nebel, M. & Quandt, D. 2018. Cleaning a taxonomic dustbin: placing the European Hypnum species in a phylogenetic context! Bryophyte Diversity & Evolution, 40, 10.11646/bde.40.2.3.CrossRefGoogle Scholar
Shaw, A.J., Cox, C.J., Goffinet, B., Buck, W.R. & Boles, S.B. 2003. Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution, 57, 22262241.Google ScholarPubMed
Simmons, M.P. & Ochoterena, H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49, 369381.CrossRefGoogle ScholarPubMed
Sollman, P. 2015. The genus Bryoerythrophyllum (Musci, Pottiaceae) in Antarctica. Polish Botanical Journal, 50, 1925.CrossRefGoogle Scholar
Stech, M. & Quandt, D. 2010. 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa, 9, 196228.CrossRefGoogle Scholar
Swofford, D.L. 2002. PAUP*. Phylogenetic analyses using parsimony (*and other methods), version 4.0. Sunderland: Sinauer Associates. Retrieved from https://paup.phylosolutions.com/Google Scholar
Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation, University of Texas at Austin.Google Scholar