Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-08T17:52:18.823Z Has data issue: false hasContentIssue false

Revisiting lead isotope data in Shang and Western Zhou bronzes

Published online by Cambridge University Press:  06 December 2017

Zhengyao Jin
Affiliation:
USTC Archaeometry Laboratory, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
Ruiliang Liu*
Affiliation:
School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
Jessica Rawson
Affiliation:
School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
A. Mark Pollard
Affiliation:
School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
*
*Author for correspondence (Email: ruiliang.liu@arch.ox.ac.uk)

Abstract

Lead is a major component of Chinese ritual bronze vessels. Defining its sources and usage is thus highly significant to understanding the metal industries of the Chinese Bronze Age. A new, simplified method has been developed for examining data, thereby providing insight into diachronic change in the origins of lead sources used in artefacts. Application of this method to the existing corpus of lead isotope data from the Erlitou (c. 1600 BC) to the Western Zhou (c. 1045–771 BC) periods reveals changes in the isotope signal over this time frame. These changes clearly reflect shifts in the sourcing of ores and their use in metropolitan foundries. Further data are required to understand these complex developments.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagley, R.W. 1977. P'an-lung-ch'eng: a Shang city in Hupei. Artibus Asiae 39: 165219. https://doi.org/10.2307/3250165 Google Scholar
Cui, J. & Wu, X.. 2008. Qian tongweisu kaogu yanjiu. Beijing: Wenwu.Google Scholar
Cui, J., Tong, W. & Wu, X.. 2012. Yuanqu shangcheng chutu bufen tonglianzha ji tongqi de qian tongweisu bizhi fenxi yanjiu. Wenwu 2012 (7): 8084.Google Scholar
Dahlkamp, F.J. 2009. Uranium deposits of the world: Asia. Berlin: Springer. https://doi.org/10.1007/978-3-540-78558-3 Google Scholar
Hsu, Y.-K., Bray, P.J., Hommel, P., Pollard, A.M. & Rawson, J.. 2016. Tracing the flows of copper and copper alloys in the Early Iron Age societies of the eastern Eurasian steppe. Antiquity 90: 357–75. https://doi.org/10.15184/aqy.2016.22 CrossRefGoogle Scholar
Huang, M.C. 2013/2014. Cong kaogu faxian kan Xi Zhou muzang de [fenqi] xianxiang yu Xi Zhou shidai liqi zhidu de leixing yu jieduan (shangpian/xiapian). Zhongyang yanjiuyuan Lishi yuyan yanjiusuo jikan 83/84: 607–70/182.Google Scholar
IA CASS Institute of Archaeology, Chinese Academy of Social Science. 2014. Erlitou: 1999–2006. Beijing: Wenwu.Google Scholar
Jin, Z. 1987. Sources of metals for the bronze production in the Central Plain during the late Shang period, in Jin, Z. (ed.) Lead isotope archaeology in China: 292302. Hefei: Press of University of Science and Technology of China.Google Scholar
Jin, Z. 2008. Zhongguo qian tongweisu kaogu. Beijing: Press of University of Science and Technology.Google Scholar
Jin, Z., Chase, T., Hirao, Y., Peng, S., Mabuchi, H., Miwa, K. & Zhan, K.. 1994. Jiangxi Xin'gan Dayangzhou Shangmu qingtongqi de qian tongweisu bizhi yanjiu. Kaogu 1994: 744–47.Google Scholar
Jin, Z., Mabuchi, H., Chase, T., Chen, D., Miwa, K. & Hirao, Y.. 1995. Guanghan Sanxingdui yiwukeng qingtongqi de qian tongweisu bizhi yanjiu. Wenwu 1995 (2): 8085.Google Scholar
Jin, Z., Zhu, B., Chang, X., Xu, Z., Zhang, Q. & Tang, F.. 2004. Chengdu Jinsha yizhi tongqi yanjiu. Wenwu 2004 (7): 7688.Google Scholar
Killick, D. 2016. Comment on Sun et al.’s (2016) ‘Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes’. Nature Scientific Reports 6: article no. 23304. Available at: http://www.nature.com/articles/srep23304 (accessed 30 June 2017).Google Scholar
Li, X. 2002. Cong qian tongweisu bizhi shixi Shang Zhou shiqi qingtongqi de kuangliao laiyuan. Kaogu yu wenwu 2002 (2): 6166.Google Scholar
Li, Y., Yue, Z. & Liu, Y.. 2007. Cong Xiaomintun dongnandi chutu taofan tan dui Yinxu qingtongqi de jidian xinrenshi. Kaogu 2007 (3): 5263.Google Scholar
Liu, J. 2015. Shaanbei diqu chutu Shang Zhou shiqi qingtongqi de kexue fenxi yanjiu—jianlun Shangdai wanqi jinshan gaoyuan yu Anyang Yinxu de wenhua lianxi. Unpublished PhD dissertation, University of Science and Technology, Beijing.Google Scholar
Liu, L. & Chen, X.. 2009. State formation in early China. London: Duckworth.Google Scholar
Lu, G. 2011. Yinxu Xiaomintun dongnandi chutu taofan niandai de zairenshi ji xiangguan wenti. Kaogu 2011 (8): 6672.Google Scholar
Mei, J. 2009. Early metallurgy and socio-cultural complexity: archaeological discoveries in northwest China, in Hanks, B.K. & Linduff, K.M. (ed.) Social complexity in prehistoric Eurasia: monuments, metals, and mobility: 215–34. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511605376.013 Google Scholar
Molofsky, L.J., Killick, D., Ducea, M.N., Macovei, M., Chesley, J.T., Ruiz, J., Thibodeau, A. & Popescu, G.C.. 2014. A novel approach to lead isotope provenance studies of tin and bronze: applications to South African, Botswanan and Romanian artifacts. Journal of Archaeological Science 50: 440–50. https://doi.org/10.1016/j.jas.2014.08.006 Google Scholar
Pan, Y. & Dong, P.. 1999. The Lower Changjiang (Yangtze/Yangtze River) metallogenic belt, east-central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews 15: 177242. https://doi.org/10.1016/S0169-1368(99)00022-0 Google Scholar
Peng, Z., Deng, Y. & Liu, C.. 1985. Qian tongweisu bizhifa zai kaogu yanjiu zhong de yingyong. Kaogu 1985: 1032–37.Google Scholar
Peng, Z., Sun, W., Huang, Y., Zhang, X., Liu, S. & Lu, B.. 1997. Gan'ewan zhudi gudai kuangliao quxiang de chubu yanjiu. Kaogu 1997: 5361.Google Scholar
Peng, Z., Liu, Y., Liu, S. & Hua, J.. 1999. Gan'eyu diyu Shangdai qingtongqi he bufen tongqian kuangliao laiyuan de chutan. Ziran kexueshi yanjiu 18 (3): 241–49.Google Scholar
Peng, Z., Wang, Z., Sun, W., Liu, S. & Chen, X.. 2001. Panlongcheng Shangdai qingtongqi qian tongweisu shizong yanjiu, in Institute of Archaeology Hubei (ed.) Panlongcheng 1963–1949 nian kaogu fajue baogao: 552–58. Beijing: Wenwu.Google Scholar
Pollard, A.M. & Bray, P.J.. 2015. A new method for combining lead isotope and lead abundance data to characterize archaeological copper alloys. Archaeometry 57: 9961008. https://doi.org/10.1111/arcm.12145 Google Scholar
Pollard, A.M. & Heron, C.. 2008. Archaeological chemistry. Cambridge: Royal Society of Chemistry.Google Scholar
Pollard, A.M., Bray, P., Hommel, P., Hsu, Y.-K., Liu, R. & Rawson, J.. 2017a. Bronze Age metal circulation in China. Antiquity 91: 674–87. https://doi.org/10.15184/aqy.2017.45 CrossRefGoogle Scholar
Pollard, A.M., Bray, P., Hommel, P., Hsu, Y.-K., Liu, R. & Rawson, J.. 2017b. Liyong niujin yanjiu tixi shenhua dui Zhongguo qingtongqi de renshi. Kaogu [2017 (1)]: 95106.Google Scholar
Rawson, J. 1990. Western Zhou ritual bronzes from the Arthur M. Sackler Collections. Washington, D.C: Arthur M. Sackler Foundation.Google Scholar
Rawson, J. 2017. Shimao and Erlitou: new perspectives on the origins of the bronze industry in central China. Antiquity 91 (355) Project Gallery. https://doi.org/10.15184/aqy.2016.234 Google Scholar
Saito, T., Han, R. & Sun, S.. 2002. Preliminary consideration of the source of lead used for bronze objects in Chinese Shang dynasty: was it really from the area where Sichuan, Yunan and Guizhou provinces meet? Paper presented at the BUMA-V (The Fifth International Conference on the Beginning of the Use of Metal and Alloys), Gyeongju, Korea, 21–24 April 2002.Google Scholar
Sun, S., Han, R., Chen, T., Zhai, T., Ban, B. & Tian, K.. 2001. Panlongcheng chutu qingtongqi de qian tongweisu bi ceding baogao, in Institute of Archaeology Hubei (ed.) Panlongcheng 1963–1949 nian kaogu fajue baogao: 545–51. Beijing: Wenwu.Google Scholar
Sun, W., Zhang, L., Guo, J., Li, C., Jiang, Y., Zartman, R.E. & Zhang, Z.. 2016. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes. Nature Scientific Reports 6: article no. 23304. https://doi.org/10.1038/srep23304 Google Scholar
Tian, J. 2013. Zhengzhou diqu chutu Erligang qi tongqi yanjiu. Unpublished PhD dissertation, University of Science and Technology of China.Google Scholar
Wang, H. 2014. China's first empire? Interpreting the material record of the Erligang expansion, in Steinke, K. & Ching, D.C.Y. (ed.) Art and archaeology of the Erligang civilization: 6797. Princeton (NJ): Princeton University Press.Google Scholar
Wang, H., Jin, Z., Li, G., Tian, J., Li, R. & Zhao, C.. 2008. Chengyang diqu chutu bufen qingtongqi de kexue fenxi. Xibu kaogu 2008: 319–21.Google Scholar
Xu, W., Wang, L., Li, H. & Guo, X.. 2005. Zhongtiaoshan tongkuangchuang tongweisu diqiu huaxue yanjiu. Acta Geoscientica Sinica 2005 (26): 130–33.Google Scholar
Zheng, Z. & Chen, Z.. 1985. Yinxu qingtongqi de fenqi yu niandai , in IA CASS (ed.) Yinxu qingtongqi: 2775. Beijing: Wenwu.Google Scholar
Zhu, B. 1995. The mapping of geochemical provinces in China based on Pb isotopes. Journal of Geochemical Exploration 55: 171–81. https://doi.org/10.1016/0375-6742(95)00011-9 Google Scholar
Zhu, B. 2010. Zhongguo Shangdai kuangwu ziyuan liyong de jige diqiu huaxue mi'an. Kuangwu xuebao 2010 (S1): 109–10.Google Scholar
Zhu, B. & Chang, X.. 2002. Ping ‘Yin Shang qingtongqi gaofangshe chengyinqian’ de faxian. Gudai wenming 2002 (1): 278–83.Google Scholar
Zhu, H., Gao, J. & Zhang, D.. 2006. Qinling diqu shouci faxian han fangshexing chengyin yichangqian de tongkuangchuang. Mineral Resources and Geology 2006 (20): 461–64.Google Scholar
Zou, H. 1964a. Shilun Yinxu wenhua fenqi. Beijing daxue xuebao 1964 (4): 3763.Google Scholar
Zou, H. 1964b. Shilun Yinxu wenhua fenqi (Xuwan). Beijing daxue xuebao 1964 (5): 6390.Google Scholar
Supplementary material: PDF

Jin et al supplementary material

Jin et al supplementary material 1

Download Jin et al supplementary material(PDF)
PDF 282.3 KB