Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-06T06:05:21.273Z Has data issue: false hasContentIssue false

Spix’s Macaw Cyanopsitta spixii (Wagler, 1832) population viability analysis

Published online by Cambridge University Press:  06 July 2023

Ugo Vercillo*
Affiliation:
Center for Sustainable Development, University of Brasília, Brasília, Brazil BlueSky, Curaçá, Brazil
Luiz Gustavo Oliveira-Santos
Affiliation:
University of Mato Grosso do Sul, Campo Grande, Brazil
Marisa Novaes
Affiliation:
University of Goias, Goiânia, Brazil
Cromwell Purchase
Affiliation:
Association for the Conservation of Threatened Parrots, Rüdersdorf, Germany
Candice Purchase
Affiliation:
Association for the Conservation of Threatened Parrots, Rüdersdorf, Germany
Camile Lugarini
Affiliation:
Chico Mendes Institute for Biodiversity Conservation, Brasília, Brazil
Ariane Ferreira
Affiliation:
Chico Mendes Institute for Biodiversity Conservation, Brasília, Brazil
Paulo De Marco
Affiliation:
University of Goias, Goiânia, Brazil
Vladislav Marcuk
Affiliation:
Association for the Conservation of Threatened Parrots, Rüdersdorf, Germany
Jose Luiz Franco
Affiliation:
Center for Sustainable Development, University of Brasília, Brasília, Brazil BlueSky, Curaçá, Brazil
*
Corresponding author: Ugo Vercillo; Email: ugoeichler@gmail.com

Summary

Spix’s Macaw Cyanopsitta spixii is one of the most endangered Neotropical Psittacidae species. Extinct in the wild in the year 2000, in June 2022 the first cohort of C. spixii was reintroduced to its original habitat. For a successful reintroduction of the species, it is necessary to examine the viability of the population against natural and external threats and the environmental requirements for success. Thus, this paper presents a “Population Viability Analysis” (PVA) for Spix’s Macaw. It used the Vortex and RangeShiftR software, biological and environmental data from a bibliographic survey, and information provided by the field team responsible for the reintroduction of the species, and who work directly with the species in captivity. We found that the minimum viable population (MVP) for reintroduction of the species is 20 individuals. However, considering the impact of disease, drought, hunting, and illegal trafficking, this population can only persist if the release of individuals from captivity occurs annually over the next 20 years combined with the reforestation of natural habitat to support population growth.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barros, Y. D. M., Soye, Y. D., Miyaki, C. Y., Watson, R., Crosta, L. and Lugarini, C. (2012) Plano de ação nacional para a conservação da ararinha-azul: Cyanopsitta spixii. Brasília, Brazil: Instituto Chico Mendes de Conservação da Biodiversidade.Google Scholar
Bastille-Rousseau, G., Potts, J. R., Yackulic, C. B., Frair, J. L., Ellington, E. H. and Blake, S. (2016) Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov. Ecol. 4 : doi:10.1186/s40462-016-0080-y.CrossRefGoogle Scholar
Biasotto, L. D., Pacifico, E. C., Paschotto, F. R., Filadelfo, T., Couto, M. B., Sousa, A. E. B. A., Mantovani, P., et al. (2022) Power line electrocution as an overlooked threat to Lear’s Macaw (Anodorhynchus leari). Ibis: 10.1111/ibi.13139.Google Scholar
BirdLife International. (2023) Species Factsheet: Cyanopsitta spixii. http://www.birdlife.org.Google Scholar
Boyce, M. S. (1992) Population viability analysis. Annu. Rev. Ecol. Evol. Syst. 23 : 481506.CrossRefGoogle Scholar
Brightsmith, D. J. (2005) Competition, predation and nest niche shifts among tropical cavity nesters: phylogeny and natural history evolution of parrots (Psittaciformes) and trogons (Trogoniformes). J. Avian Biol. 36 : 6473.CrossRefGoogle Scholar
Brito, D. (2009) Análise de viabilidade de populações: uma ferramenta para a conservação da biodiversidade no Brasil. Oecol. Bras. 13 : 452469.CrossRefGoogle Scholar
Campos, I. B., Lugarini, C., de Sousa, A. E. B., Barbosa, A. E. A., Miyaki, C. Y., Aguilar, T. M., do Amaral, A. C. A., et al. (2012) Análise de viabilidade populacional de uma população de arara-azul-de-lear. Pp. 4857 in Lugarini, C., Barbosa, A. E. A. and de Oliveira, K. G. organisers. Plano de ação nacional para a conservação da arara-azul-de-lear. Brasília, Brazil: Instituto Chico Mendes de Conservação da Biodiversidade.Google Scholar
Cavalcanti, L. C. S., Rafael, L. M., Barbosa, L. C. S., Braz, A. M. and Ribeiro, J. R. (2020) Can landscape units map help the conservation of Spix’s Macaw (Cyanopsitta spixii)? RA’EGA - Espaco Geogr. em Anal. 8 : 181198.Google Scholar
Giacomini, H. C. (2007) Sete motivações teóricas para o uso da modelagem baseada no indivíduo em ecologia. Acta Amazon. 37 : 431446.CrossRefGoogle Scholar
Gomides, S. C., Machado, T. M., Evangelista‐Vale, J. C., Martins‐Oliveira, A. T., Pires‐Oliveira, J. C., Muller, A., da Rosa, L. B., et al. (2021) Assessing species reintroduction sites based on future climate suitability for food resources. Conserv. Biol. 35 : 18211832.CrossRefGoogle ScholarPubMed
Gov.Br. (2018) Official Gazette. Decreto n° 9.402, de 5 de junho de 2018. Cria o Refúgio de Vida Silvestre da Ararinha Azul e a Área de Proteção Ambiental da Ararinha Azul. https://www.in.gov.br/materia/-./asset_publisher/Kujrw0TZC2Mb/content/id/17538364/do1-2018-06-06-decreto-n-9-402-de-5-de-junho-de-2018-17538330.Google Scholar
IUCN/SSC. (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission.Google Scholar
Jarić, I., Ebenhard, T. and Lenhardt, M. (2010) Population viability analysis of the Danube sturgeon populations in a Vortex simulation model. Rev. Fish Biol. Fish. 20 : 219237.CrossRefGoogle Scholar
Johnson, D. H. (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61 : 6571.CrossRefGoogle Scholar
Juniper, A. T. and Yamashita, C. (1991) The habitat and status of Spix’s Macaw Cyanopsitta spixii. Bird Conserv. Internatn. 1: 19.CrossRefGoogle Scholar
Juniper, T. (2002) Spix’s Macaw: the race to save the world’s rarest bird. New York, USA: Washington Square Press.Google Scholar
Lacy, R. C. and Breininger, D. R. (2021) Population Viability Analysis (PVA) as a platform for predicting outcomes of management options for the Florida Scrub-Jay in Brevard County. The Nature Conservancy contract: FL Scrub-Jay MOU/Research.Google Scholar
Lacy, R. C., Miller, P. S. and Traylor-Holzer, K. (2021) Vortex 10 user’s manual. Apple Valley, MN, USA: IUCN/SSC Conservation Breeding Specialist Group/Chicago Zoological Society.Google Scholar
Lacy, R. C. and Pollak, J. P. (2014) Vortex: a stochastic simulation of the extinction process. Version 10.0. Brookfield, IL, USA: Chicago Zoological Society.Google Scholar
Lugarini, C., Vercillo, U. E., Purchase, C., Watson, R. and Schischakin, N. (2021) A conservação da Ararinha-azul, Cyanopsitta spixii (Wagler, 1832): desafios e conquistas. BioBrasil 11 : 116.CrossRefGoogle Scholar
Malchow, A., Bocedi, G., Palmer, S. C. F., Travis, J. M. J. and Zurell, D. (2021) RangeShiftR: an R package for individual‐based simulation of spatial eco‐evolutionary dynamics and species’ responses to environmental changes. Ecography 44 : 14431452.CrossRefGoogle Scholar
Marcuk, V., Purchase, C., de Boer, D., Bürkle, M. and Scholtyssek, K. (2020) Qualitative description of the submission and agonistic behavior of the Spix’s Macaw (Cyanopsitta spixii, Spix 1824), with special reference to the displacement displays. J. Ethol. 38 : 253270.CrossRefGoogle Scholar
Oliveira-Santos, L. G. R., Moore, S. A., Severud, W. J., Forester, J. D., Isaac, E. J., Chenaux-Ibrahim, Y., Garwood, T., et al. (2021). Spatial compartmentalization: a nonlethal predator mechanism to reduce parasite transmission between prey species. Sci. Adv. 7 : doi: 10.1126/sciadv.abj5944.CrossRefGoogle ScholarPubMed
Parlato, E. H. and Armstrong, D. P. (2018) Predicting reintroduction outcomes for highly vulnerable species that do not currently coexist with their key threats. Conserv. Biol. 32 : 13461355.CrossRefGoogle Scholar
Pe’er, G., Matsinos, Y. G., Johst, K., Franz, K. W., Turlure, C., Radchuk, V., Malinowska, A. H., et al. (2013) A protocol for better design, application, and communication of population viability analyses. Conserv. Biol. 27 : 644656.CrossRefGoogle ScholarPubMed
Silva, C. L. G. D. (2016) Densidade e uso de habitat de psitacídeos na área de ocorrência histórica da extinta ararinha-azul. João Pessoa, Brazil: Universidade Federal da Paraíba.Google Scholar
Silva, M. and Downing, J. A. (1995) The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. Am. Nat. 145 : 704727.CrossRefGoogle Scholar
Staeheli, P., Rinder, M. and Kaspers, B. (2010) Avian bornavirus associated with fatal disease in psittacine birds. J. Virol. 84 : 62696275.CrossRefGoogle ScholarPubMed
Thévenin, C., Mouchet, M., Robert, A., Kerbiriou, C. and Sarrazin, F. (2018) Reintroductions of birds and mammals involve evolutionarily distinct species at the regional scale. Proc. Natn. Acad. Sci. U S A 115 : 34043409.CrossRefGoogle ScholarPubMed
Vercillo, U. E., Martins, A. C. M., Dalmolin, C. C., de Araújo, E. S., Marangon, G. M. C., Escarlate-Tavares, F. and de Andrade Franco, J. L. (2022) Espécies da fauna silvestre ameaçadas de extinção no Brasil: os planos de ação nacionais e suas contribuições para as metas globais de biodiversidade. Desenvolv. Meio Ambiente 59 : 461488.Google Scholar
Vilarta, M. R., Wittkoff, W., Lobato, C., Oliveira, R. D. A., Pereira, N. G. P. and Silveira, L. F. (2021) Reintroduction of the Golden Conure (Guaruba guarouba) in Northern Brazil: establishing a population in a protected area. Diversity 13 : 198.CrossRefGoogle Scholar
White, T. H. Jr, Abreu, W., Benitez, G., Jhonson, A., Lopez, M., Ramirez, L., Rodriguez, I., et al. (2021) Minimizing potential allee effects in psittacine reintroductions: an example from Puerto Rico. Diversity 13 : 118.CrossRefGoogle Scholar
White, T. H. Jr, Collar, N. J., Moorhouse, R. J., Sanz, V., Stolen, E. D. and Brightsmith, D. J. (2012) Psittacine reintroductions: common denominators of success. Biol. Conserv. 148 : 106115.CrossRefGoogle Scholar
White, T. H. Jr, Collazo, J. A., Dinsmore, S. J. and Llerandi-Román, I. (2014) Niche restriction and conservatism in a neotropical psittacine: the case of the Puerto Rican parrot. Pp. 183 in Devore, B ed. Habitat loss: causes, effects on biodiversity and reduction strategies. New York, NY, USA: Nova Science Publishers.Google Scholar
Wolf, C. M., Garland, T. Jr and Griffith, B. (1998) Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biol. Conserv. 86 : 243255.CrossRefGoogle Scholar
Worton, B. J. (1989) Kernel methods for estimating the utilization distribution in home‐range studies. Ecology 70 : 164168.CrossRefGoogle Scholar
Zilko, J. P., Harley, D., Pavlova, A. and Sunnucks, P. (2021) Applying population viability analysis to inform genetic rescue that preserves locally unique genetic variation in a critically endangered mammal. Diversity 13 : 382.CrossRefGoogle Scholar