Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-07T04:06:33.326Z Has data issue: false hasContentIssue false

Effects of inulin supplementation on inflammatory biomarkers and clinical symptoms of women with obesity and depression on a calorie-restricted diet: a randomised controlled clinical trial

Published online by Cambridge University Press:  05 September 2022

Elnaz Vaghef-Mehrabani
Affiliation:
Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada Department of Pediatrics, University of Calgary, Calgary, AB, Canada Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Roya Harouni
Affiliation:
Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Maryam Behrooz
Affiliation:
Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Fatemeh Ranjbar
Affiliation:
Research Center of Psychiatry & Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Mohammad Asghari-Jafarabadi
Affiliation:
Cabrini Research, Cabrini Health, VIC 3144, Australia School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia Road Traffic Injury Research Center, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
Mehrangiz Ebrahimi-Mameghani*
Affiliation:
Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
*
*Corresponding author: Mehrangiz Ebrahimi-Mameghani, email ebrahimimamagani@tbzmed.ac.ir

Abstract

Major depressive disorder (MDD) is regarded as an inflammatory disorder. Gut microbiota dysbiosis, observed in both MDD and obesity, leads to endotoxemia and inflammatory status, eventually exacerbating depressive symptoms. Manipulation of gut microbiota by prebiotics might help alleviate depression. The present study aimed to investigate the effects of inulin supplementation on psychological outcomes and biomarkers of gut permeability, endotoxemia, inflammation, and brain-derived neurotrophic factor (BDNF) in women with obesity and depression on a calorie-restricted diet. In a double-blind randomised clinical trial, forty-five women with obesity and MDD were allocated to receive 10 g/d of either inulin or maltodextrin for 8 weeks; all the patients followed a healthy calorie restricted diet as well. Anthropometric measures, dietary intakes, depression, and serum levels of zonulin, lipopolysaccharide (LPS), inflammatory biomarkers (TNF-α, IL-10, monocyte chemoattractant protein-1, toll-like receptor-4 and high-sensitivity C-reactive protein), and BDNF were assessed at baseline and end of the study. Weight and Hamilton Depression Rating Scale (HDRS) scores decreased in both groups; between-group differences were non-significant by the end of study (P = 0·333 for body weight and P = 0·500 for HDRS). No between-group differences were observed for the other psychological outcomes and serum biomarkers (P > 0·05). In this short-term study, prebiotic supplementation had no significant beneficial effects on depressive symptoms, gut permeability, or inflammatory biomarkers in women with obesity and depression.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (2017) Depression and Other Common Mental Disorders: Global Health Estimates. Geneva. https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf?sequence=1 (accessed February 2019).Google Scholar
Luppino, FS, de Wit, LM, Bouvy, PF, et al. (2010) Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatr 67, 220229.CrossRefGoogle ScholarPubMed
Berk, M, Williams, LJ, Jacka, FN, et al. (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11, 200.CrossRefGoogle ScholarPubMed
Liang, S, Wu, X, Hu, X, et al. (2018) Recognizing depression from the microbiota- gut-brain axis. Int J Mol Sci 19, 1592.CrossRefGoogle ScholarPubMed
Sturgeon, C & Fasano, A (2016) Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4, e1251384.CrossRefGoogle ScholarPubMed
Maes, M, Kubera, M & Leunis, JC (2008) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 29, 117124.Google Scholar
Calabrese, F, Rossetti, AC, Racagni, G, et al. (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8, 430.CrossRefGoogle ScholarPubMed
Zak-Gołąb, A, Kocełak, P, Aptekorz, M, et al. (2013) Gut microbiota, microinflammation, metabolic profile, and zonulin concentration in obese and normal weight subjects. Int J Endocrinol 2013, 674106.CrossRefGoogle ScholarPubMed
Stevens, BR, Goel, R, Seungbum, K, et al. (2018) Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 67, 15551557.CrossRefGoogle ScholarPubMed
Dowlati, Y, Herrmann, N, Swardfager, W, et al. (2010) A meta-analysis of cytokines in major depression. Biol Psychiatr 67, 446457.CrossRefGoogle ScholarPubMed
Wilkins, J, Ghosh, P, Vivar, J, et al. (2018) Exploring the associations between systemic inflammation, obesity and healthy days: a health related quality of life (HRQOL) analysis of NHANES 2005–2008. BMC Obes 5, 2121.CrossRefGoogle Scholar
Jakobsen, JC, Katakam, KK, Schou, A, et al. (2017) Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis. BMC Psychiatr 17, 58.CrossRefGoogle ScholarPubMed
Barnes, ER, Theeke, L, Minchau, E, et al. (2015) Relationships between obesity management and depression management in a university-based family medicine center. J Am Assoc Nurse Practitioner 27, 256261.CrossRefGoogle Scholar
Ott, B, Skurk, T, Hastreiter, L, et al. (2017) Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 7, 1195511955.10.CrossRefGoogle ScholarPubMed
Zhang, Y, Liu, C, Zhao, Y, et al. (2015) The effects of calorie restriction in depression and potential mechanisms. Curr Neuropharmacol 13, 536542.CrossRefGoogle ScholarPubMed
Gibson, GR, Hutkins, R, Sanders, ME, et al. (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14, 491.CrossRefGoogle ScholarPubMed
Delgado, GT & Tamashiro, WM (2018) Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int 113, 183188.CrossRefGoogle Scholar
Delzenne, NM, Neyrinck, AM, Backhed, F, et al. (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7, 639646.CrossRefGoogle ScholarPubMed
Abbasalizad Farhangi, M, Javid, AZ, Sarmadi, B, et al. (2018) A randomized controlled trial on the efficacy of resistant dextrin, as functional food, in women with type 2 diabetes: targeting the hypothalamic–pituitary–adrenal axis and immune system. Clin Nutr 37, 12161223.CrossRefGoogle Scholar
Faulconbridge, LF, Driscoll, CFB, Hopkins, CM, et al. (2018) Combined treatment for obesity and depression: a pilot study. Obesity 26, 11441152.CrossRefGoogle ScholarPubMed
Chaitoff, A, Swetlik, C, Ituarte, C, et al. (2019) Associations between unhealthy weight-loss strategies and depressive symptoms. Am J Prev Med 56, 241250.CrossRefGoogle ScholarPubMed
Dhar, AK & Barton, DA (2016) Depression and the link with cardiovascular disease. Front Psychiatr 7, 3333.CrossRefGoogle ScholarPubMed
Mendelson, SD (2008) 6 – Depression, metabolic syndrome, and heart disease. In Metabolic Syndrome Psychiatric Illness, pp. 93103 [Mendelson, SD, editor]. San Diego: Academic Press.CrossRefGoogle Scholar
Roberfroid, M (2007) Prebiotics: the concept revisited. J Nutr 137, 830s837s.CrossRefGoogle ScholarPubMed
Sharp, R (2015) The Hamilton Rating Scale for Depression. Occup Med 65, 340340.CrossRefGoogle ScholarPubMed
Dehghan, P, Gargari, BP, Jafar-Abadi, MA, et al. (2014) Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr 65, 117123.CrossRefGoogle ScholarPubMed
López-Pina, JA, Rosa-Alcázar, AI & Sánchez-Meca, J (2009) The Hamilton Rating Scale for Depression: a meta-analytic reliability generalization study. Int J Clin Health Psychol 9, 143159.Google Scholar
Sullivan, L (2020) Power and Sample Size Determination. https://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Power/BS704_Power_print.html (accessed May 2022).Google Scholar
Saghaei, M (2004) Random allocation software for parallel group randomized trials. BMC Med Res Method 4, 26.CrossRefGoogle ScholarPubMed
Ireton-Jones, C (2017) Intake: energy. In Krause’s Food and the Nutrition Care Process, 14th ed. pp. 2025 [MLaR, JL, editor]. Louis, Missouri: Elsevier Inc.Google Scholar
Bonnema, AL, Kolberg, LW, Thomas, W, et al. (2010) Gastrointestinal tolerance of chicory inulin products. J Am Dietetic Assoc 110, 865868.CrossRefGoogle ScholarPubMed
Meyer, D & Stasse-Wolthuis, M (2009) The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 63, 12771289.CrossRefGoogle ScholarPubMed
Kolida, S, Tuohy, K & Gibson, GR (2002) Prebiotic effects of inulin and oligofructose. Br J Nutr 2, S193S197.CrossRefGoogle Scholar
Committee, IR (2005) Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)–Short and Long Forms. http://www.IPAQ.ki.se (accessed January 2017).Google Scholar
Compher, C, Frankenfield, D, Keim, N, et al. (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Dietetic Assoc 106, 881903.CrossRefGoogle ScholarPubMed
Spielberger, C, Gorsuch, R, Lushene, R, et al. (1983) State-Trait Anxiety Inventory for Adults. Palo Alto, CA: Consulting Psychologists.Google Scholar
Aezimi, H & Zarghami, M (2001) The assessment of religious conflict and anxiety in students of Mazandaran University of Medical Sciences. J Mazandaran Univ Med Sci 12, 3746.Google Scholar
Bastani, F, Hidarnia, A, Kazemnejad, A, et al. (2005) A randomized controlled trial of the effects of applied relaxation training on reducing anxiety and perceived stress in pregnant women. J Midwifery Women’s Health 50, e36e40.CrossRefGoogle ScholarPubMed
Jalali, MM, Soleimani, R, Fallahi, M, et al. (2015) Psychometric properties of the Persian version of the Tinnitus Handicap Inventory (THI-P). Iranian J Otorhinolaryngol 27, 8394.Google ScholarPubMed
Mortazavi, F & Akaberi, A (2018) Validation of the anxiety scale for pregnancy in a sample of Iranian women. Int J Women’s Health Reprod Sci 6, 6774.CrossRefGoogle Scholar
Hedlund, JL & Vieweg, BW (1979) The Hamilton rating scale for depression: a comprehensive review. J Oper Psychiatr 10, 149165.Google Scholar
Martinsen, EW, Friis, S & Hoffart, A (1995) Assessment of depression: comparison between Beck Depression Inventory and subscales of Comprehensive Psychopathological Rating Scale. Acta Psychiatr Scand 92, 460463.CrossRefGoogle ScholarPubMed
Ghassemzadeh, H, Mojtabai, R, Karamghadiri, N, et al. (2005) Psychometric properties of a Persian-language version of the Beck Depression Inventory--second edition: BDI-II-PERSIAN. Depress Anxiety 21, 185192.CrossRefGoogle ScholarPubMed
Ebrahimi, A, Barekatain, M, Bornamanesh, A, et al. (2015) Psychometric properties of the Persian version of Bipolar Depression Rating Scale (BDRS) in patients and general population. ijpcp 21, 6068.Google Scholar
Ahmadpanah, M, Sheikhbabaei, M, Haghighi, M, et al. (2016) Validity and test-retest reliability of the Persian version of the Montgomery-Asberg Depression Rating Scale. Neuropsychiatr Dis Treat 12, 603607.Google ScholarPubMed
Khosravi, A, Mousavi, SA, Chaman, R, et al. (2015) Reliability and validity of the Persian version of the World Health Organization-Five Well-Being Index. Int J Health Stud 1, 1719.Google Scholar
Lê Cook, B & Manning, WG (2013) Thinking beyond the mean: a practical guide for using quantile regression methods for health services research. Shanghai Arch Psychiatr 25, 5559.Google Scholar
Eilers, PH, Röder, E, Savelkoul, HF, et al. (2012) Quantile regression for the statistical analysis of immunological data with many non-detects. BMC Immunol 13, 37.CrossRefGoogle Scholar
Masson, SC & Tejani, AM (2013) Minimum clinically important differences identified for commonly used depression rating scales. J Clin Epidemiol 66, 805807.CrossRefGoogle ScholarPubMed
Hruby, A & Jacques, PF (2019) Dietary protein and changes in biomarkers of inflammation and oxidative stress in the Framingham heart study offspring cohort. Curr Dev Nutr 3, nzz019.CrossRefGoogle Scholar
Kökten, T, Hansmannel, F, Ndiaye, NC, et al. (2021) Calorie restriction as a new treatment of inflammatory diseases. Adv Nutr 12, 15581570.CrossRefGoogle ScholarPubMed
Manchishi, SM, Cui, RJ, Zou, XH, et al. (2018) Effect of caloric restriction on depression. J Cell Mol Med 22, 25282535.CrossRefGoogle ScholarPubMed
Oh, J, Yun, K, Chae, J-H, et al. (2020) Association between macronutrients intake and depression in the United States and South Korea. Front Psychiatr 11, 207.CrossRefGoogle ScholarPubMed
Morell, P & Fiszman, S (2017) Revisiting the role of protein-induced satiation and satiety. Food Hydrocolloids 68, 199210.CrossRefGoogle Scholar
Pereira, MA & Ludwig, DS (2001) Dietary fiber and body-weight regulation: observations and mechanisms. Pediatr Clin North Am 48, 969980.CrossRefGoogle ScholarPubMed
Parnell, JA & Reimer, RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89, 17511759.CrossRefGoogle ScholarPubMed
Han, H, Yi, B, Zhong, R, et al. (2021) From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome 9, 162.CrossRefGoogle ScholarPubMed
Schachter, J, Martel, J, Lin, CS, et al. (2018) Effects of obesity on depression: a role for inflammation and the gut microbiota. Brain Behav Immunity 69, 18.CrossRefGoogle ScholarPubMed
Russo, F, Linsalata, M, Clemente, C, et al. (2012) Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 32, 940946.CrossRefGoogle ScholarPubMed
Dehghan, P, Pourghassem Gargari, B & Asghari Jafar-abadi, M (2014) Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 30, 418423.CrossRefGoogle ScholarPubMed
Azpiroz, F, Dubray, C, Bernalier-Donadille, A, et al. (2016) Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterol Motility 29, e12911.CrossRefGoogle ScholarPubMed
Silk, DBA, Davis, A, Vulevic, J, et al. (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29, 508518.CrossRefGoogle ScholarPubMed
Smith, AP (2005) The concept of well-being: relevance to nutrition research. Br J Nutr 1, S15.CrossRefGoogle Scholar
Kazemi, A, Noorbala, AA, Azam, K, et al. (2018) Effect of probiotic and prebiotic v. placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr 38, 522528.CrossRefGoogle Scholar
McCambridge, J, Witton, J & Elbourne, DR (2014) Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol 67, 267277.CrossRefGoogle ScholarPubMed
Le Bastard, Q, Chapelet, G, Javaudin, F, et al. (2020) The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. Eur J Clin Microbiol Infect Dis 39, 403413.CrossRefGoogle ScholarPubMed
McLoughlin, RF, Berthon, BS, Jensen, ME, et al. (2017) Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 106, 930945.CrossRefGoogle ScholarPubMed
Singh, V, Yeoh, BS, Walker, RE, et al. (2019) Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 68, 18011812.CrossRefGoogle ScholarPubMed
Massier, L, Chakaroun, R, Kovacs, P, et al. (2021) Blurring the picture in leaky gut research: how shortcomings of zonulin as a biomarker mislead the field of intestinal permeability. Gut 70, 18011802.CrossRefGoogle ScholarPubMed
Zughaier, SM, Ryley, HC & Jackson, SK (1999) Lipopolysaccharide (LPS) from Burkholderia cepacia is more active than LPS from Pseudomonas aeruginosa and Stenotrophomonas maltophilia in stimulating tumor necrosis factorfrom human monocytes. Infect Immunity 67, 15051507.CrossRefGoogle Scholar
Lin, T-L, Shu, C-C, Chen, Y-M, et al. (2020) Like cures like: pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front Pharmacol 11, 554.CrossRefGoogle ScholarPubMed