Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-13T05:19:50.746Z Has data issue: false hasContentIssue false

Physiological effects of fibre-rich types of bread

2. Dietary fibre from bread: digestibility by the intestinal microflora and water-holding capacity in the colon of human subjects*

Published online by Cambridge University Press:  09 March 2007

W. van Dokkum
Affiliation:
Department of Nutrition, Institute CIVO-Toxicology and Nutrition – TNO, PO Box 360, 3700 AJ Zeist, The Netherlands
N. A. Pikaar
Affiliation:
Department of Nutrition, Institute CIVO-Toxicology and Nutrition – TNO, PO Box 360, 3700 AJ Zeist, The Netherlands
J. T. N. M. Thissen
Affiliation:
Department of Nutrition, Institute CIVO-Toxicology and Nutrition – TNO, PO Box 360, 3700 AJ Zeist, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Twelve young adult male volunteers were given a low-fibre white bread diet (9 g neutral-detergent fibre (NDF)/d) and a medium-fibre coarse-bran bread diet (22 g NDF/d), each lasting 20 d. In a third period of 20 d the volunteers were subdivided in groups of four, consuming a high-fibre coarse-bran bread diet (35 g NDF/d), a medium-fibre fine-bran diet (22 g NDF/d, bran particle size > 0.35 mm) or a wholemeal bread diet (22 g NDF/d). Digestion of dietary fibre and its components hemicellulose, cellulose and lignin were determined as well as colonic function.

2. An increase of the amount of dietary fibre (through bran in bread) from 9 to 22 g NDF/d resulted in the following significant changes (P < 0.01): increase in faecal wet weight of 63 g/d, decrease in the percentage of faecal dry weight from 27 to 24, increase in defaecation frequency of 0.2 stools/d and reduction of the intestinal transit time of 36 h.

3. Further significant changes with regard to all factors mentioned were observed during the high-fibre diet. Faecal wet weight was significantly (P < 0.05) lower with the fine-bran bread diet than with the coarse-bran bread on a similar fibre intake of 22 g NDF/d. Results obtained in the wholemeal-bread period did not show significant differences compared with those from the coarse-bran bread period of 22 g NDF/d.

4. Mean digestibilities for the fibre from bread were: for NDF 0.34, for hemicellulose 0.46, for cellulose 0.20 and for lignin 0.04.

5. The results obtained suggest that the theory of sponge activity of the fibre matrix structure is the predominant factor accounting for the water binding capacity of fibre in the colon.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Burkitt, D. P. & Trowell, H. C. (1975). Refined Carbohydrate Foods and Disease: Some Implications of Dietary Fibre. London: Academic Press.Google Scholar
Burkitt, D. P., Walker, A. R. P. & Painter, N. S. (1972). Lancet ii, 14081412.CrossRefGoogle Scholar
Bustos Fernandez, L., Gonzalez, E., Marzi, A. & Ledesma de Paolo, M. I. (1971). New England Journal of Medicine 284, 295298.Google Scholar
Cummings, J. H., Hill, M. J., Jenkins, D. J. A., Pearson, J. R. & Wiggins, H. S. (1976 a) American Journal of Clinical Nutrition 29, 14681473.CrossRefGoogle Scholar
Cummings, J. H., Jenkins, D. J. A. & Wiggins, H. S. (1976 b). Gut 17, 210218.Google Scholar
Dawson, A. M., Holdsworth, C. D. & Webb, J. (1964). Proceedings of the Society for Experimental Biology and Medicine 117, 97100.CrossRefGoogle Scholar
Dintzis, F. R., Legg, L. M., Deatherage, W. L., Baker, F. L., Inglett, G. E., Jacob, R. A., Reck, S. J., Munoz, J. M., Klevay, L. M., Sandstead, H. H. & Shuey, W. C. (1979). Cereal Chemistry 56, 123127.Google Scholar
Eastwood, M. A. (1974). Journal of the Science of Food and Agriculture 25, 15231527.Google Scholar
Eastwood, M. A. & Kay, R. M. (1979). American Journal of Clinical Nutrition 32, 364367.Google Scholar
Fantus, B., Hirschberg, N. & Frankl, W. (1941). Review of Gastroenterology 8, 277280.Google Scholar
Floch, M. H. & Fuchs, H. M. (1978). American Journal of Clinical Nutrition 31, S185S189.CrossRefGoogle Scholar
Fordtran, J. S. (1971). New England Journal of Medicine 284, 329330.Google Scholar
Forsyth, W. A., Chenoweth, W. L. & Bennink, M. R. (1978). Journal of Food Science 43, 14701472.Google Scholar
Heller, S. N., Hackler, L. R., Rivers, J. M., Van Soest, P. J., Roe, D. A., Lewis, B. A. & Robertson, J. (1980). American Journal of Clinical Nutrition 33, 17341744.CrossRefGoogle Scholar
Hinton, J. M., Lennard-Jones, J. E. & Young, A. C. (1969). Gut 10, 842847.Google Scholar
Holloway, W. D., Tasman-Jones, C. & Lee, S. P. (1978). American Journal of Clinical Nutrition 31, 927930.Google Scholar
Jelaca, S. L. & Hlynka, I. (1971). Cereal Chemistry 48, 211222.Google Scholar
Kay, R. M. (1982). Journal of Lipid Research 23, 221242.CrossRefGoogle Scholar
Kay, R. M. & Truswell, A. S. (1977). British Journal of Nutrition 37, 227235.CrossRefGoogle Scholar
Kelsay, J. L. (1978). American Journal of Clinical Nutrition 31, 142159.CrossRefGoogle Scholar
Kirwan, W. O., Smith, A. N., McConnell, A. A., Mitchell, W. D. & Eastwood, M. A. (1974). British Medical Journal iv, 187189.CrossRefGoogle Scholar
McNeil, N. I., Cummings, J. H. & James, W. P. T. (1978). Gut 19, 819822.CrossRefGoogle Scholar
Mitchell, W. D. & Eastwood, M. A. (1976). In Fiber in Human Nutrition, pp. 185206 [Spiller, G. A. and Amen, R. J. editors]. New York: Plenum Press.Google Scholar
Noel, R. J. (1976). Journal of the Association of Official Analytical Chemists 59, 141147.Google Scholar
Payler, D. K., Pomare, E. W., Heaton, K. W. & Harvey, R. F. (1975). Gut 16, 209213.Google Scholar
Schormüller, J. (1967). Handbuch der Lebensmittelchemie, vol. 2, p. 77. Berlin: Springer Verlag.Google Scholar
Schormüller, J. (1969). Handbuch der Lebensmittelchemie, vol. 4, p. 423. Berlin: Springer Verlag.Google Scholar
Smith, A. N., Drummond, E. & Eastwood, M. A. (1981). American Journal of Clinical Nutrition 34, 24602463.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press.Google Scholar
Spiller, G. A., Shipley, E. A. & Blake, J. A. (1978). Critical Reviews in Food Science and Nutrition 10, 3191.Google Scholar
Stephen, A. M. & Cummings, J. H. (1979). Gut 20, A457.Google Scholar
Terry, R. A. & Outen, G. E. (1973). Chemistry and Industry, London 23, 11161117.Google Scholar
Thomas, B. & Elchazly, M. (1976). Qualitas Plantarum – Plant Foods for Human Nutrition 26, 211216.Google Scholar
Trowell, H. (1976). American Journal of Clinical Nutrition 29, 417427.CrossRefGoogle Scholar
Tucker, D. M., Sandstead, H. H., Logan, G. M., Klevay, L. M., Mahalko, J., Johnson, L. K., Inman, L. & Inglett, G. E. (1981). Gastroenterology 81, 879883.Google Scholar
van de Kamer, J. H. (1941). Chemisch Weekblad 38, 286288.Google Scholar
van de Kamer, J. H., Gerritsma, K. W. & Wansink, E. J. (1955). Biochemical Journal 61, 174176.Google Scholar
Van Dokkum, W., Wesstra, A. & Schippers, F. A. (1982). British Journal of Nutrition 47, 451460.Google Scholar
Van Soest, P. J. & Robertson, J. B. (1977). Nutrition Reviews 35, M1222.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967). Journal of the Association of Official Analytical Chemists 50, 5055.Google Scholar
Williams, R. D. & Olmsted, W. H. (1936). Journal of Nutrition 11, 433449.Google Scholar
Wymann, J. B., Heaton, K. W., Manning, A. P. & Wicks, A. C. B. (1976). American Journal of Clinical Nutrition 29, 14741479.Google Scholar