Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-13T08:10:45.487Z Has data issue: false hasContentIssue false

EFFECT OF RH-5992, A NONSTEROIDAL ECDYSONE AGONIST, ON THE SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (LEPIDOPTERA: TORTRICIDAE): LABORATORY, GREENHOUSE, AND GROUND SPRAY TRIALS

Published online by Cambridge University Press:  31 May 2012

A. Retnakaran
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen St. E., Sault Ste. Marie, Ontario, Canada P6A 5M7
L.F.R. Smith
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen St. E., Sault Ste. Marie, Ontario, Canada P6A 5M7
W.L. Tomkins
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen St. E., Sault Ste. Marie, Ontario, Canada P6A 5M7
M.J. Primavera
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen St. E., Sault Ste. Marie, Ontario, Canada P6A 5M7
S.R. Palli
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen St. E., Sault Ste. Marie, Ontario, Canada P6A 5M7
N. Payne
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen St. E., Sault Ste. Marie, Ontario, Canada P6A 5M7
L. Jobin
Affiliation:
Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du P.E.P.S., Saint Foy, Quebec, Canada G1V 4C7

Abstract

Ingestion of 0.1 μg of RH-5992, tebufenozide, by early 6th instar larvae of the spruce budworm, Choristoneura fumiferana (Clem.), prior to the appearance of the ecdysone peak in the hemolymph, resulted in the induction of a precocious incomplete moult that was lethal. The larvae stopped feeding within 8 h post ingestion and remained quiescent just as they do in preparation for a normal moult. Head capsule slippage started at 12 h post ingestion, became pronounced by 24 h, and by 48 h an untanned new head capsule was visible behind the old one. The lack of tanning of the new cuticle was due to the failure of dopadecarboxylase gene expression. Although the old cuticle was loose around the entire body, indicating that apolysis had occurred, there was no evidence of ecdysis of the old cuticle, suggesting that eclosion hormone was probably not released. Earlier instars required a lower dose than the later ones to elicit an "all or none" type of moulting response. The most effective routes of entry were by intrahemocoelic injection, followed by ingestion. Topical application was effective only when nonaqueous carriers such as acetone or dimethyl sulfoxide were used. The larvae were unable to discriminate between treated and untreated diet over a 48-h period. The transcription factor, Choristoneura hormone receptor 3, which is normally expressed at the onset of the hemolymph ecdysone peak, was expressed in the epidermis 1 h post ingestion of RH-5992, reached a peak level by 3 h, and became undetectable by 24 h, confirming that this analogue acts through the ecdysone receptor system. Greenhouse tests using potted white spruce trees sprayed with RH-5992 and colonized with 4th-instar spruce budworm indicated that field dosages of 35, 70, 140, and 280 g/ha would all be effective. Ground spray trials conducted in a spruce budworm infested white spruce stand in Zee Casault, Gaspé, Quebec, using a backpack sprayer showed that ≥ 70 g/ha of RH-5992 reduced the insect population by 100% with very little defoliation and was better than Chlorfluazuron® (an analogue of the chitin synthesis inhibitor, diflubenzuron or Dimilin®) treatment, which was used as a positive control. The unique mode of action of this ecdysone agonist and its effectiveness as an environmentally benign control agent for the spruce budworm are discussed.

Résumé

L’ingestion de 0,1 μg de RH-5992, ou Tebufenozide, par de jeunes larves de sixième stade de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clem.), avant l’apparition de la concentration maximale d’ecdysone dans l’hémolymphe, a provoqué l’apparition d’une mue partielle, létale à l’insecte. Les larves ont cessé de se nourrir moins de 8 h après ingestion et ont conservé une apparence semblable à celle précédent une mue normale. La capsule céphalique a commencé à se détacher 12 h après ingestion; ce détachement fut plus évident après 24 h et, après 48 h, une nouvelle capsule céphalique de couleur pâle était visible sous l’ancienne. L’absence de coloration de la nouvelle cuticule est le résultat de l’inactivation du gène de la dopadecarboxylase. Quoi que la vielle cuticule fut détachée du corps de l’insecte indiquant que l’apolyse eut lieu, il n’y a pas de preuve que la cuticule initiale se soit détachée, mettant en évidence le fait que l’hormone de la mue ne fut pas sécrétée. Pour provoquer le processus de la mue de type "tout ou rien", les premiers stades larvaires utilisent une plus faible dose d’hormone que les stades plus âgés. Les modes de pénétration les plus efficaces sont par injection intrahémocoelique, ou par ingestion. Une application sur la cuticule était efficace seulement lorsqu’un produit tel que l’acétone ou le diméthyl sulfoxide est utilisé. Pendant une période de 48 h, les larves ne pouvaient établir une distinction entre les régimes alimentaires traités ou non traités. Le messager, Choristoneura hormone receptor 3, s’exprime lorsque l’ecdysone de l’hémolymphe atteint son palier maximal, est décelé dans l’épidémie 1 h après ingestion de RH-5992, atteint un sommet après 3 h, et ne peut être détecté 24 h plus tard, mettant en évidence le fait que cet analogue agit sur le système récepteur de l’ecdysone. Des essais en serre à l’aide de larves de 4ième stade de la tordeuse des bourgeons de l’épinette élevées sur des plants d’épinette blanche traités avec le RH-5992, indiquent que les doses de 35, 70, 140 et 280 g par ha sont toutes aussi efficaces les unes que les autres. Des traitements au sol dans un peuplement d’épinette. blanche infesté par la tordeuse des bourgeons de l’épinette localisé à Zec Casault, Québec, réalisés à l’aide d’un pulvérisateur portatif, démontrent qu’une dose de 70 g par ha de RH-5992 entraîne une diminution de 100% des populations larvaires. De plus, ce produit a donné des résultats très supérieurs au Chlorfluazuron® (un analogue de l’inhibiteur de synthèse de la chitine, le diflubenzuron ou Dimilin®) utilisé comme traitement comparatif. Le mode d’action particulier de cet ecdysone de synthèse de même que son efficacité comme agent de lutte contre la tordeuse des bourgeons de l’épinette et sa sécurité pour l’environnement sont discutés.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Aller, H.E., and Ramsay, J.R.. 1988. RH-5489—A novel insect growth regulator with a new mode of action. Vol. 2, pp. 511518in Brighton Crop Protection Conference—Pests and Diseases, Nov. 21–24 (1988), Brighton, British Crop Protection Council.Google Scholar
Brown, J.J. 1994. Effects of a nonsteroidal ecdysone agonist, Tebufenozide, on host/parasitoid interactions. Archives of Insect Biochemistry and Physiology 26: 235248.CrossRefGoogle Scholar
Cadogan, B.L., Retnakaran, A., and Meating, J.. 1997. Efficacy of RH-5992, a new insect growth regulator against spruce budworm (Lepidoptera: Tortricidae) in a boreal forest. Journal of Economic Entomology 90: 551559.CrossRefGoogle Scholar
Darvas, B., Polgar, L., Tag El-Din, M.H., Katalin, E., and Wing, D.. 1992. Developmental disturbances in different insect orders caused by an ecdysteroid agonist, RH-5849. Journal of Economic Entomology 85: 21072112.CrossRefGoogle Scholar
Fleming, R., and Retnakaran, A.. 1985. Evaluating single treatment data using Abbott's formula with reference to insecticides. Journal of Economic Entomology 78: 11791181.CrossRefGoogle Scholar
Grisdale, D. 1970. An improved laboratory method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 102: 11111117.CrossRefGoogle Scholar
Hsu, A.C.-T., Fujimoto, T.T., and Dhadialla, T.S.. 1997. Structure activity study and conformational analysis of RH-5992, the first commercialized non-steroidal ecdysone agonist. pp. 206219in Hedin, P.A. (Ed.), Phytochemicals for Pest Control. ACS Symposium Series 658.Google Scholar
Kato, Y., Nair, K.K., Dyer, K.A., and Riddiford, L.M.. 1987. Changes in ploidy level of epidermal cells during last larval instar of the tobacco homworm, Manduca sexta. Development 99: 137143.CrossRefGoogle Scholar
Kothapalli, R., Palli, S.R., Ladd, T.R., Sohi, S.S., Cress, D., Dhadialla, T.T., Tzertzinis, G., and Retnakaran, A.. 1995. Cloning and developmental expression of the ecdysone receptor gene from the spruce budworm, Choristoneura fumiferana. Developmental Genetics 17: 319330.CrossRefGoogle ScholarPubMed
Koul, O., and Kapil, R.S.. 1994. RH-5489, a nonsteroidal ecdysone agonist, does not mimic makisterone-A in Dysdergus koenigii. Experentia 50: 461464.CrossRefGoogle Scholar
Kreutzweiser, D.P., Capell, S.S., Wainio-Keizer, K.L., and Eichenberg, D.C.. 1994. Toxicity of a new moult-inducing insecticide (RH-5992) to aquatic macro invertebrates. Ecotoxicology and Environmental Safety 28: 1424.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 97: 5862CrossRefGoogle Scholar
Oberlander, H., Silhacek, D.L., and Porcheron, P.. 1995. Non-steroidal ecdysteroid agonists: tools for the study of hormonal action. Archives of Insect Biochemistry and Physiology 28: 209223.CrossRefGoogle Scholar
Oikawa, N., Nakagawa, Y., Soya, Y., Nishimura, K., Kurihara, N., Ueno, T., and Fujita, T.. 1993. Enhancement of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis by moulting hormone and dibenzoyl hydrazine insecticides. Pesticide Biochemistry and Physiology 47: 165170.CrossRefGoogle Scholar
Palli, S.R., Ladd, T.R., Sohi, S.S., Cook, B.J., and Retnakaran, A.. 1996. Cloning and developmental expression of Choristoneura hormone receptor 3, an ecdysone-inducible gene and a member of the steroid hormone receptor superfamily. Insect Biochemistry and Molecular Biology 26: 485499.CrossRefGoogle Scholar
Palli, S.R., Primavera, M., Lambert, D., and Retnakaran, A.. 1995. Age specific effects of a non-steroidal ecdysone agonist, RH-5992, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). European Journal of Entomology 92: 325332.Google Scholar
Payne, N., Retnakaran, A., and Cadogan, B.L.. 1996. Development and evaluation of a model for the aerial application of Mimic® to control the eastern spruce budworm, Choristoneura fumiferana (Clem.). Crop Protection 16: 285290.CrossRefGoogle Scholar
Retnakaran, A. 1980. Effect of 3 moult inhibiting insect growth regulators on the spruce budworm, Choristoneura fumiferana (Clem.). Journal of Economic Entomology 73: 520524.CrossRefGoogle Scholar
Retnakaran, A. 1982. Laboratory, greenhouse and field evaluation of a fast-acting, insect growth regulator against the spruce budworm. The Canadian Entomologist 114: 513530.CrossRefGoogle Scholar
Retnakaran, A., and Oberlander, H.. 1993. Control of chitin synthesis in insects. pp. 8999in Muzzarelli, R.A.A. (Ed.), Chitin Enzymology. European Chitin Society, Ancona, Italy.Google Scholar
Retnakaran, A., Hiruma, K., Palli, S.R., and Riddiford, L.M.. 1995. Molecular analysis of the mode of action of RH-5992, a lepidopteran-specific, non-steroidal ecdysteroid agonist. Insect Biochemistry and Molecular Biology 25: 109117.CrossRefGoogle Scholar
Retnakaran, A., Lauzon, H., and Fast, P.. 1983. Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Entomologia Experimentalis et Applicata 34: 233239.CrossRefGoogle Scholar
Retnakaran, A., MacDonald, A., Nicholson, D., and Percy-Cunningham, J.. 1989. Ultrastructural and autoradiographic investigations of the interference of Chlorfluazuron with cuticle differentiation in the spruce budworm, Choristoneura fumiferana. Pesticide Biochemistry and Physiology 35: 172184.CrossRefGoogle Scholar
Retnakaran, A., MacDonald, A., Tomkins, W., Davis, C., Brownwright, A.J., and Palli, S.R.. 1997. Ultrastructural effects of a non-steroidal ecdysone agonist, RH-5992, on the sixth instar larva of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology 43: 5568.CrossRefGoogle Scholar
Reynolds, S.E. 1977. Control of cuticle extensibility in the wings of adult Manduca at the time of eclosion: effects of eclosion hormone and Bursicon. Journal of Experimental Biology 70: 2739.CrossRefGoogle Scholar
Riddiford, L.M., and Truman, J.W.. 1993. Hormone receptors and the regulation of insect metamorphosis. American Zoologist 33: 340347.CrossRefGoogle Scholar
Segraves, W.A. 1994. Steroid receptors and other transcription factors in ecdysone response. Recent Progress in Hormone Research 49: 167195.Google ScholarPubMed
Silhacek, D.L., Oberlander, H., and Porcheron, P.. 1990. Action of RH-5489, a non-steroidal ecdysteroid mimic, on Plodia interpunctella (Hübner) in vivo and in vitro. Archives of Insect Biochemistry and Physiology 15: 201212CrossRefGoogle Scholar
Smagghe, G., and Degheele, D.. 1992. Effects of RH-5849, the first nonsteroidal agonist, on larvae of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology 21: 119128.CrossRefGoogle Scholar
Smagghe, G., and Degheele, D.. 1994 a. Action of a novel nonsteroid ecdysteroid mimic, Tebufenozide (RH-5992), on insects of different orders. Pesticide Science 42: 8592.CrossRefGoogle Scholar
Smagghe, G., and Degheele, D.. 1994 b. Effects of the ecdysteroid agonists RH-5489 and RH-5992, alone and in combination with a juvenile hormone analog, pyriproxifen, on larvae of Spodoptera exigua. Entomologia Experimentalis et Applicata 72: 115123.CrossRefGoogle Scholar
Sohi, S.S., Palli, S.R., and Retnakaran, A.. 1995. Forest insect cell lines that are responsive to ecdysone and ecdysone agonists. Journal of Insect Physiology 41: 457464.CrossRefGoogle Scholar
Truman, J.W. 1981. Interaction between ecdysteroid, eclosion hormone, and bursicon titers in Manduca sexta. American Zoologist 21: 655–651.CrossRefGoogle Scholar
Truman, J.W. 1992. The eclosion hormone system of insects. Progress in Brain Research 92: 361374.CrossRefGoogle ScholarPubMed
Wing, K.D. 1988. RH-5489, a nonsteroidal ecdysone agonist: effects on a Drosophila cell line. Science (Washington, D.C.) 241: 467469.CrossRefGoogle ScholarPubMed
Wing, D.D., Slawecki, R.A., and Carlson, G.R.. 1988. RH-5489, a nonsteroidal ecdysone agonist: effects on larval lepidoptera. Science (Washington, D.C.) 241: 470472.CrossRefGoogle ScholarPubMed