Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T01:16:41.728Z Has data issue: false hasContentIssue false

EFFECT OF TEMPERATURE ON THE PATHOGENESIS OF BACILLUS THURINGIENSIS BERLINER IN LARVAE OF THE SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA CLEM. (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Kees van Frankenhuyzen
Affiliation:
Natural Resources Canada, Canadian Forest Service, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

The relationship between temperature and pathogenesis of Bacillus thuringiensis Berliner var. kurstaki in infected larvae of the eastern spruce budworm, Choristoneura fumiferana Clem., was investigated to determine if more rapid death of larvae with an increase in temperature could be accounted for by enhanced bacterial growth. Cumulative mortality of larvae force-fed with a lethal dose of HD-1-S-1980 peaked within 2 days at 25 °C, 3 days at 19 °C, 7 days at 16 °C, and 21 days at 13 °C. The progress of bacterial growth in the larvae was followed from spore germination to cell lysis, and was completed within 4 days at 25 °C, 6 days at 22 °C, 12 days at 19 °C, 14 days at 16 °C, and > 28 days at 13 °C. Peak abundance of vegetative cells in the larvae was observed after 1 day at 25 °C, 2 days at 22 °C, 3 days at 19 °C, 7 days at 16 °C, and 21 days at 13 °C, and thus coincided almost exactly with the time required for maximum larval mortality. This correlation suggests that the observed effect of temperature on progression of larval mortality was due to its effect on the proliferation of vegetative cells in the infected larvae, and that bacterial septicemia makes an important contribution to death.

Résumé

La relation entre la température et les effets pathogènes de Bacillus thuringiensis Berliner var. kurstaki a été étudiée chez des larves infectées de la Tordeuse des bourgeons de l’épinette, Choristoneura fumiferana Clem., afin de déterminer si la mort plus rapide des larves à haute température peut s’expliquer par une accélération de la croissance des bactéries. La mortalité cumulative de larves gavées d’une dose létale de HD-1-S-1980 a atteint un sommet en 2 jours à 25 °C, en 3 jours à 19 °C, en 7 jours à 16 °C et en 21 jours à 13 °C. Le progrès de la croissance des bactéries chez les larves a été suivi de la germination des spores à la lyse des cellules, un processus qui a nécessité 4 jours à 25 °C, 6 jours à 22 °C, 12 jours à 19 °C, 14 jours à 16 °C et > 28 jours à 13 °C. L’abondance maximale des cellules végétatives chez les larves a été observée après 1 jour à 25 °C, 2 jours à 22 °C, 3 jours à 19 °C, 7 jours à 16 °C et 21 jours à 13 °C, ce qui correspond à peu près exactement au temps requis pour que la mortalité des larves soit maximale. Cette corrélation semble indiquer que l’effet de la température sur la progression de la mortalité larvaire est causé par son influence sur la prolifération des cellules végétatives chez les larves infectées et que la septicémie bactérienne est largement responsable de la mortalité.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beegle, C.C., Couch, T.L., Alls, R.T., Versoi, P.L., and Lee, B.L.. 1986. Standardization of HD-1-S-1980: U.S. standard for assay of lepidopterous-active Bacillus thuringiensis. Bulletin of the Entomological Society of America 32: 4445.CrossRefGoogle Scholar
Fast, P.G. 1977. Bacillus thuringiensis delta-endotoxin: On the relative roles of spores and cyrstals in toxicity to spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 109: 15151518.Google Scholar
Grisdale, D.G. 1984. A laboratory method for mass rearing the eastern spruce budworm, Choristoneura fumiferana. pp. 223–231 in King, E.G., and Leppla, N.C. (Eds.), Advances and Challenges in Insect Rearing. USDA Agric. Res. Service. 306 pp.Google Scholar
Heimpel, A.M., and Angus, T.A.. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. Journal of Insect Pathology 1: 152170.Google Scholar
Milne, R., Ge, A.Z., Rivers, D., and Dean, D.H.. 1990. Specificity of insecticidal crystal proteins—implications for industrial standardization. pp. 22–35 in Hickle, L.A., and Fitch, W.L. (Eds.), Analytical Chemistry of Bacillus thuringiensis. Symposium Series 432, American Chemical Society, Washington, DC.254 pp.Google Scholar
Smirnoff, W.A. 1967. Influence of temperature on the rate of development of six varieties of the Bacillus cereus group. pp. 125–130 in van der Laan, P.A. (Ed.), Insect Pathology and Microbial Control. North Holland Publishing Company, Amsterdam. 430 pp.Google Scholar
van Frankenhuyzen, K. 1990. Effect of temperature and exposure time on toxicity of Bacillus thuringiensis spray deposits to spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). The Canadian Entomologist 122: 6975.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Gringorten, J.L.. 1991. Frass failure and pupation failure as quantal measurements of Bacillus thuringiensis toxicity to Lepidoptera. Journal of Invertebrate Pathology 58: 465467.CrossRefGoogle ScholarPubMed
van Frankenhuyzen, K., Gringorten, J.L., Milne, R.E., Gauthier, D., Pusztai, M., Brousseau, R., and Masson, L.. 1991. Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating forest Lepidoptera. Applied and Environmental Microbiology 57: 16501655.CrossRefGoogle ScholarPubMed
van Frankenhuyzen, K., and Nystrom, C.W.. 1987. Effect of temperature on mortality and recovery of spruce budworm (Lepidoptera: Tortricidae) exposed to Bacillus thuringiensis Berliner. The Canadian Entomologist 119: 941954.CrossRefGoogle Scholar