Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-10T17:47:49.947Z Has data issue: false hasContentIssue false

TEMPORAL VARIATION IN RANGELAND GRASSHOPPER (ORTHOPTERA: ACRIDIDAE) COMMUNITIES IN THE STEPPE REGION OF MONTANA, USA

Published online by Cambridge University Press:  31 May 2012

William P. Kemp
Affiliation:
USDA Agricultural Research Service, Rangeland Insect Laboratory, Bozeman, Montana, USA59717–036

Abstract

A study was conducted to evaluate changes in rangeland grasshopper communities over a 5-year period in the Agropyron spicatum (Pursh) Scribn. and Smith and Bouteloua gracilis (H.B.K.) Lag. provinces of the steppe region of Montana, USA. Results showed that it was possible to categorize years into outbreak, non-outbreak, and transitional based on rangeland grasshopper intensity. Nearly twice as many species were observed in outbreak versus non-outbreak years. Of the 57 total grasshopper species collected over the entire study period, 16 species were found only during outbreak years and only two were found exclusively during non-outbreak years. Of the remaining 39 species collected during outbreak and non-outbreak years, 27 species showed no significant differences in the percentage of the community that they represented and 11 species showed significant increases. The only species that made up proportionately less of the community as densities declined from outbreak to non-outbreak was Melanoplus sanguinipes (F.). Although M. sanguinipes, Ageneotettix deorum (Scudder), and Aulocara elliotti (Thomas) were the three top-ranked species in both outbreak and non-outbreak years, M. sanguinipes contributed most to overall shifts in grasshopper intensity. Results support the hypothesis that grasshopper communities overall are sensitive to temporal changes in resources, even though responses of individual species differed.

Résumé

Un programme d’étude de 5 ans a été entrepris dans le but d’évaluer les fluctuations des communautés de criquets dans les pâturages, dans les zones à Agropyron spicatum (Pursh) Scribn. et Smith et à Bouteloua gracilis (H.B.K.) Lag., dans la région des steppes du Montana, É.-U. Les résultats ont démontré qu’il était possible de classifier les années en années épidémiques, années non épidémiques et années de transition d’après la densité des criquets dans les zones de pâturage. Près de deux fois plus d’espèces ont été observées au cours des années épidémiques qu’au cours des années non épidémiques. Des 57 espèces de criquets récoltées au total durant la période d’étude, 16 n’ont été rencontrées qu’au cours des épidémies et seulement deux ont été récoltées exclusivement au cours des années non épidémiques. Parmi les 39 autres espèces récoltées tant au cours des années épidémiques que des années non épidémiques, 27 représentaient le même pourcentage de leur population au cours des deux types d’années, alors que 11 de ces espèces représentaient une proportion significativement plus grande de leur population au cours des années d’épidémies. La seule espèce qui composait une moins grande proportion de la communauté à mesure que les densités diminuaient, des années d’épidémies aux années non épidémiques, était Melanoplus sanguinipes (F.). Bien que M. sanguinipes, Ageneotettix deorum (Scudder) et Aulocara elliotti (Thomas) se soient avérées les trois espèces les plus abondantes à la fois au cours des années d’épidémies et au cours des années non épidémiques, M. sanguinipes est l’espèce qui a contribué le plus aux fluctuations globales de la densité des communautés de criquets. Les résultats corroborent l’hypothèse selon laquelle les communautés de criquets sont de façon générale sensibles aux fluctuations temporelles des ressources, même si les fluctuations des différentes espèces ne sont pas toujours les mêmes.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.L. 1973. The vegetation of rangeland sites associated with some grasshopper studies in Montana. Montana Agric. Exp. Stn. Bull. 668: 47 pp.Google Scholar
Brown, J.H. 1984. On the relationships between abundance and distribution of species. Am. Nat. 124: 255279.CrossRefGoogle Scholar
Brown, J.H., and Kurzius, M.A.. 1987. Composition of desert rodent fauna: Combinations of coexisting species. Ann. Zool. Fenn. 24: 227237.Google Scholar
Capinera, J.L., and Horton, D.R.. 1989. Geographic variation in effects of weather on grasshopper infestation. Environ. Ent. 18: 814.CrossRefGoogle Scholar
Capinera, J.L., and Thompson, D.C.. 1987. Dynamics and structure of grasshopper assemblages in shortgrass prairie. Can. Ent. 119: 567575.CrossRefGoogle Scholar
Clements, F.E. 1916. Plant succession: An analysis of the development of vegetation. Carnegie Institute Publ. 242, Washington, DC. 512 pp.Google Scholar
Connell, J.H., and Sousa, W.P.. 1983. On the evidence to judge stability or persistence. Am. Nat. 121: 789824.CrossRefGoogle Scholar
Daubenmire, R. 1978. Plant geography: With special reference to North America. Academic Press, New York, NY. 338 pp.Google Scholar
Eberhardt, L.L., and Thomas, J.M.. 1991. Designing experimental field studies. Ecol. Monogr. 61: 5373.CrossRefGoogle Scholar
Edwards, R.L. 1960. Relationship between grasshopper abundance and weather conditions in Saskatchewan, 1930–1958. Can. Ent. 92: 619624.CrossRefGoogle Scholar
Evans, E.W. 1988. Grasshopper (Insecta: Orthoptera: Acrididae) assemblages of tallgrass prairie: Influence of fire frequency, topography, and vegetation. Can. J. Zool. 66: 14951501.CrossRefGoogle Scholar
Evans, E.W., Rogers, R.A., and Opfermann, D.J.. 1983. Sampling grasshoppers (Orthoptera: Acrididae) on burned and unburned tallgrass prairie: Night trapping vs sweeping. Environ. Ent. 12: 14491454.CrossRefGoogle Scholar
Fielding, D.J., and Brusven, M.A.. 1990. Historical analysis of grasshopper (Orthoptera: Acrididae) population responses to climate in southern Idaho. Environ. Ent. 19: 17861791.CrossRefGoogle Scholar
Gage, S.H., and Mukerji, M.K.. 1977. A perspective of grasshopper population distribution in Saskatchewan and interrelationship with weather. Environ. Ent. 6: 469479.CrossRefGoogle Scholar
Gleason, H.A. 1917. The structure and development of the plant association. Bull. Torrey Botanical Club. 44: 463481.CrossRefGoogle Scholar
Gleason, H.A. 1926. The individualistic concept of plant association. Bull. Torrey Botanical Club. 53: 726.CrossRefGoogle Scholar
Hanski, I. 1982. Dynamics of regional distribution and the core and satellite species hypothesis. Oikos 38: 210221.CrossRefGoogle Scholar
Hewitt, G.B., and Onsager, J.A.. 1982. A method for forecasting potential losses from grasshopper feeding on northern mixed prairie forages. J. Range Manage. 35: 5357.CrossRefGoogle Scholar
James, F.C., and McCulloch, C.E.. 1990. Multivariate analysis in ecology and systematics: Panacea or Pandora's box? A. Rev. Ecol. Syst. 21: 129166.CrossRefGoogle Scholar
Joern, A., and Gaines, S.B.. 1990. Population dynamics and regulation in grasshoppers. pp. 415–482 in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. John Wiley and Sons, New York, NY. 563 pp.Google Scholar
Joern, A., and Pruess, K.P.. 1986. Temporal constancy in grasshopper assemblies (Orthoptera: Acrididae). Ecol. Ent. 11: 379385.CrossRefGoogle Scholar
Kemp, W.P. 1987 a. Probability of outbreak for rangeland grasshoppers (Orthoptera: Acrididae) in Montana: Application of Markovian principles. J. econ. Ent. 80: 11001105.CrossRefGoogle Scholar
Kemp, W.P. 1987 b. Predictive phenology modeling in rangeland pest management. pp. 351–368 in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective. Westview Press, Boulder, CO, and London. 426 pp.Google Scholar
Kemp, W.P. 1992. Rangeland grasshopper (Orthoptera: Acrididae) community structure: A working hypothesis. Environ. Ent. 21. In press.CrossRefGoogle Scholar
Kemp, W.P., Harvey, S.J., and O'Neill, K.M.. 1990 a. Patterns of vegetation and grasshopper community composition. Oecologia 83: 299308.CrossRefGoogle ScholarPubMed
Kemp, W.P., Harvey, S.J., and O'Neill, K.M.. 1990 b. Habitat and insect biology revisited. Am. Ent. 36: 4449.CrossRefGoogle Scholar
Kolasa, J. 1989. Ecological systems in hierarchical perspective: Breaks in community structure and other consequences. Ecology 70: 3647.CrossRefGoogle Scholar
Kotliar, N.B., and Wiens, J.A.. 1990. Multiple scales of patchiness and patch structure: A hierarchical framework for the study of heterogeneity. Oikos 59: 253260.CrossRefGoogle Scholar
Lawton, J.H. 1984. Herbivore community organization: General models and specific tests with phytophagous insects. pp. 329–352 in Price, P.W., Slobodchikoff, C.N., and Gaud, W.S. (Eds.), A New Ecology: Novel Approaches to Interactive Systems. John Wiley and Sons, New York, NY. 515 pp.Google Scholar
Lockwood, J.A., and Lockwood, D.R.. 1991. Rangeland grasshopper (Orthoptera: Acrididae) population dynamics: Insights from catastrophe theory. Environ. Ent. 20: 970980.CrossRefGoogle Scholar
MacCarthy, H.R. 1956. A ten year study of the climatology of Melanoplus mexicanus mexicanus (Sauss.) (Orthoptera: Acrididae) in Saskatchewan. Can. J. Agric. Sci. 36: 445462.Google Scholar
Magnuson, J.J., Crowder, L.B., and Medrick, P.A.. 1979. Temperature as an ecological resource. Am. Zool. 19: 331343.CrossRefGoogle Scholar
Onsager, J.A., and Henry, J.E.. 1977. A method for estimating the density of rangeland grasshoppers (Orthoptera: Acrididae) in experimental plots. Acrida 6: 231237.Google Scholar
Otte, D., and Joern, A.. 1979. On feeding patterns in desert grasshoppers and the evolution of specialized diets. Proc. Acad. Nat. Sci. Phila. 128: 89126.Google Scholar
Pfadt, R.E. 1977. Some aspects of the ecology of grasshopper populations inhabiting shortgrass plains. Minn. Agric. Exp. Stn. Bull. 310: 7379.Google Scholar
Pfadt, R.E. 1982. Density and diversity of grasshoppers (Orthoptera: Acrididae) in an outbreak of Arizona rangeland. Environ. Ent. 11: 690694.CrossRefGoogle Scholar
SAS Inst., Inc. 1988. SAS/STAT™ User's Guide, Release 6.03 Edition. Cary, NC. 1028 pp.Google Scholar
Strong, D.R. JrLawton, J.H., and Southwood, T.R.E.. 1984. Insects on plants: Community patterns and mechanisms. Harvard University Press, Cambridge, MA. 313 pp.Google Scholar
Turchin, P., Lorio, P.L. JrTaylor, A.D., and Billings, R.F.. 1991. Why do populations of southern pine beetles (Coleoptera: Scolytidae) fluctuate? Environ. Ent. 20: 401409.CrossRefGoogle Scholar