Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-12T14:13:34.701Z Has data issue: false hasContentIssue false

Trapping of feral honey bee workers (Hymenoptera: Apidae) in a coastal prairie landscape: effects of season and vegetation type1

Published online by Cambridge University Press:  02 April 2012

Kristen A. Baum*
Affiliation:
Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, Texas 77843, United States of America
William L. Rubink
Affiliation:
Beneficial Insects Research Unit, Honey Bee Group, USDA-ARS, 2413 East Highway 83, Building 213, Weslaco, Texas 78596, United States of America
Robert N. Coulson
Affiliation:
Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, Texas 77843, United States of America
*
3 Corresponding author (e-mail: kristen.baum@okstate.edu).

Abstract

We examined capture rates of honey bee workers (Apis mellifera L.) throughout the year and compared capture rates among four different vegetation communities. Capture rates varied throughout the year, with the largest number of bees collected from December through February, when nectar and pollen availability were low. Capture rates also varied among vegetation communities. Traps located in the woodland community contained fewer honey bees than those located in live oak in February and live oak and brushland in December, corresponding to lower estimates of nectar availability in the woodland. Few honey bees were collected during swarming periods, suggesting that most of the captured honey bees were searching for food sources. The number of honey bees collected in the traps provided a qualitative estimate of food resource availability. The traps also may be used to collect insects for genetic analysis or to examine the spatial and temporal distribution of other species.

Résumé

Nous avons examiné les taux de capture d'ouvrières d'abeilles domestiques (Apis mellifera L.) au cours de l'année et comparé les taux de capture dans quatre communautés végétales différentes. Les taux de capture varient pendant l'année et le plus grand nombre d'abeilles est récolté de décembre jusqu'en février alors que la disponibilité du nectar et du pollen est basse. Les taux de capture varient aussi en fonction des communautés végétales. Les pièges placés dans des communautés forestières contiennent moins d'abeilles domestiques que ceux situés dans des communautés de chênes verts en février ou dans des communautés de broussailles et de chênes verts en décembre, ce qui s'explique par des estimations de la disponibilité plus faible du nectar dans la forêt. Peu d'abeilles ont été capturées durant les périodes d'essaimage, ce qui indique que la plupart des abeilles récoltées étaient à la recherche de sources de nourriture. Le nombre d'abeilles domestiques capturées dans les pièges fournit une estimation qualitative de la disponibilité des ressources alimentaires. Les pièges peuvent aussi servir à récolter des insectes pour les analyses génétiques ou pour étudier la répartition spatiale et temporelle d'autres espèces.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This is contribution 654 of the Welder Wildlife Foundation, Sinton, TX 78387, United States of America.

References

Baum, K.A. 2003. Feral Africanized honey bee ecology in a coastal prairie landscape. Ph.D. thesis, Department of Entomology, Texas A&M University, College Station, Texas.Google Scholar
Baum, K.A., Rubink, W.L., Coulson, R.N., and Bryant, V.M. Jr., 2004. Pollen selection by feral honey bee (Hymenoptera: Apidae) colonies in a coastal prairie landscape. Environmental Entomology, 33: 727739.CrossRefGoogle Scholar
Baum, K.A., Rubink, W.L., Pinto, M.A., and Coulson, R.N. 2005. Spatial and temporal distribution and nest site characteristics of feral honey bee (Hymenoptera: Apidae) colonies in a coastal prairie landscape. Environmental Entomology, 34: 610618.CrossRefGoogle Scholar
Beekman, M., and Ratnieks, F.L.W. 2000. Longrange foraging by the honey-bee, Apis mellifera L. Functional Ecology, 14: 490496.CrossRefGoogle Scholar
Biesmeijer, J.C., and de Vries, H. 2001. Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept. Behavioral Ecology and Sociobiology, 49: 8999.CrossRefGoogle Scholar
Drawe, D.L., Chamrad, A.D., and Box, T.W. 1978. Plant communities of the Welder Wildlife Refuge. 2nd ed. Rob and Bessie Welder Wildlife Foundation, Sinton, Texas.Google Scholar
Gilley, D.C. 1998. The identity of nest-site scouts in honey bee swarms. Apidologie, 29: 229240.CrossRefGoogle Scholar
Jones, F.B. 1982. Flora of the Texas coastal bend. Mission Press, Corpus Christi, Texas.Google Scholar
Michener, C.D. 1974. The social behavior of the bees. A comparative study. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Pellett, F.C. 1977. American honey plants: together with those which are of special value to the beekeeper as sources of pollen. Dadant and Sons, Hamilton, Illinois.Google Scholar
Rubink, W.L., Williams, K.R., Sugden, E.S., Zavala-M., J.H., and Luévano-M, P. 1990 a. Comparison of two techniques for monitoring honey bee populations. American Bee Journal, 130: 809810.Google Scholar
Rubink, W.L., Wilson, W.T., Reséndez, J.J., and Maki, D.L. 1990 b. Pre-Africanized Apis mellifera (Hymenoptera: Apidae) swarming dynamics in northeastern Mexico and southern Texas. Journal of the Kansas Entomological Society, 63: 288297.Google Scholar
Rubink, W.L., Luévano-Martinez, P., Sugden, E.A., Wilson, W.T., and Collins, A.M. 1996. Subtropical Apis mellifera (Hymenoptera: Apidae) swarming dynamics and Africanization rates in northeastern Mexico and southern Texas. Annals of the Entomological Society of America, 89: 243251.CrossRefGoogle Scholar
Rubink, W.L., Murray, D., Baum, K.A., and Pinto, M.A. 2003. Long-term preservation of DNA from honey bees (Apis mellifera ) collected in aerial pitfall traps. Texas Journal of Science, 55: 159168.Google Scholar
Sanborn, C.E., and Scholl, E.E. 1908. Texas honey plants. Texas Agricultural Experiment Station Bulletin 102.Google Scholar
SAS Institute Inc. 1998. StatView: StatView Reference. 2nd ed. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schmidt, J.O., and Thoenes, S.C. 1987. Swarm traps for survey and control of Africanized honey bees. Bulletin of the Entomological Society America, 33: 155158.CrossRefGoogle Scholar
Schmidt, J.O., and Thoenes, S.C. 1992. Criteria for nest site selection in honey bees (Hymenoptera: Apidae): preferences between pheromone attractants and cavity shapes. Environmental Entomology, 21: 11301133.CrossRefGoogle Scholar
Schneider, S.S., and Hall, H.G. 1997. Diet selection and foraging distances of African and European–African hybrid honey bee colonies in Costa Rica. Insectes Sociaux, 44: 171187.CrossRefGoogle Scholar
Seeley, T.D. 1983. Division of labor between scouts and recruits in honeybee foraging. Behavioral Ecology and Sociobiology, 12: 253259.CrossRefGoogle Scholar
Seeley, T.D. 1986. Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behavioral Ecology and Sociobiology, 19: 343354.CrossRefGoogle Scholar
Seeley, T.D. 1987. The effectiveness of information collection about food sources by honey bee colonies. Animal Behaviour, 35: 15721575.CrossRefGoogle Scholar
Seeley, T.D., and Buhrman, S.C. 1999. Group decision making in swarms of honey bees. Behavioral Ecology and Sociobiology, 45: 1931.CrossRefGoogle Scholar
Seeley, T.D., and Buhrman, S.C. 2001. Nest-site selection in honey bees: how well do swarms implement the “best-of-N” decision rule? Behavioral Ecology and Sociobiology, 49: 416427.CrossRefGoogle Scholar
Simpson, B. 1977. Breeding systems of dominant perennial plants of two disjunct warm desert ecosystems. Oecologia, 27: 203226.CrossRefGoogle ScholarPubMed
Sokal, R.R., and Rohlf, F.J. 1995. Biometry. 3rd ed. W.H. Freeman and Company, New York.Google Scholar
Sugden, E.A., Collins, A.M., and Wilson, W.T. 1989. Preliminary survey of honey bee scout density in three South Texas habitats. American Bee Journal, 129: 824.Google Scholar
Visscher, P.K., and Seeley, T.D. 1982. Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology, 63: 17901801.CrossRefGoogle Scholar
von Frisch, K. 1967. The dance language and orientation of bees. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Waddington, K.D., Visscher, P.K., Herbert, T.J., and Raveret Richter, M. 1994. Comparisons of forager distributions from matched honey bee colonies in suburban environments. Behavioral Ecology and Sociobiology, 35: 423429.CrossRefGoogle Scholar
Winston, M.L. 1987. The biology of the honey bee. Harvard University Press, Cambridge, Massachusetts.Google Scholar