Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-13T17:18:46.016Z Has data issue: false hasContentIssue false

On webs in quantum type C

Published online by Cambridge University Press:  26 February 2021

David E. V. Rose*
Affiliation:
Department of Mathematics, The University of North Carolina at Chapel Hill, Phillips Hall CB #3250, UNC-CH, Chapel Hill, NC27599-3250, USAltatham@live.unc.edu
Logan C. Tatham
Affiliation:
Department of Mathematics, The University of North Carolina at Chapel Hill, Phillips Hall CB #3250, UNC-CH, Chapel Hill, NC27599-3250, USAltatham@live.unc.edu

Abstract

We study webs in quantum type C, focusing on the rank three case. We define a linear pivotal category $\textbf {Web}(\mathfrak {sp}_{6})$ diagrammatically by generators and relations, and conjecture that it is equivalent to the category $\textbf {FundRep}(U_q(\mathfrak {sp}_{6}))$ of quantum $\mathfrak {sp}_{6}$ representations generated by the fundamental representations, for generic values of the parameter q. We prove a number of results in support of this conjecture, most notably that there is a full, essentially surjective functor $\textbf {Web}(\mathfrak {sp}_{6}) \rightarrow \textbf {FundRep}(U_q(\mathfrak {sp}_{6}))$ , that all $\textrm {Hom}$ -spaces in $\textbf {Web}(\mathfrak {sp}_{6})$ are finite-dimensional, and that the endomorphism algebra of the monoidal unit in $\textbf {Web}(\mathfrak {sp}_{6})$ is one-dimensional. The latter corresponds to the statement that all closed webs can be evaluated to scalars using local relations; as such, we obtain a new approach to the quantum $\mathfrak {sp}_{6}$ link invariants, akin to the Kauffman bracket description of the Jones polynomial.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported in part by Simons Collaboration Grant 523992: Research on knot invariants, representation theory, and categorification.

References

Bar-Natan, D., Khovanov’s homology for tangles and cobordisms . Geom. Topol. 9(2005), 14431499. arxiv:0410495 CrossRefGoogle Scholar
Bar-Natan, D., Fast Khovanov homology computations . J. Knot Theory Ramificat. 16(2007), no. 3, 253255. arxiv:math/0606318 CrossRefGoogle Scholar
Bar-Natan, D. and Morrison, S., The Karoubi envelope and Lee’s degeneration of Khovanov homology . Algebr. Geom. Topol. 6(2006), no. 3, 14591469.CrossRefGoogle Scholar
Barrett, J. and Westbury, B., Spherical categories . Adv. Math. 143(1999), 357375.CrossRefGoogle Scholar
Beliakova, A., Guliyev, Z., Habiro, K., and Lauda, A., Trace as an alternative decategorification functor . Acta Math. Vietnam 39(2014), no. 4, 425480.CrossRefGoogle Scholar
Birman, J. and Wenzl, H., Braids, link polynomials and a new algebra . Trans. Amer. Math. Soc. 313(1989), no. 1, 249273.CrossRefGoogle Scholar
Bodish, E., Elias, B., Rose, D. E. V., and Tatham, L., In preparation.Google Scholar
Brown, G., Davidson, N., and Kujawa, J., Quantum webs of type Q. Preprint, 2020. arxiv:2001.00663 Google Scholar
Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra III: category ${\mathcal{O}}$ . Represent. Theory 15(2011), 170243. arxiv:0812.1090 CrossRefGoogle Scholar
Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup . J. Eur. Math. Soc. 14(2012), 373419.CrossRefGoogle Scholar
Cautis, S., Kamnitzer, J., and Morrison, S., Webs and quantum skew Howe duality . Math. Ann. 360(2014), nos. 1–2, 351390, arxiv:1210.6437 CrossRefGoogle Scholar
Chari, V. and Pressley, A., A guide to quantum groups . Cambridge University Press, Cambridge, MA, 1994.Google Scholar
Elias, B., Light ladders and clasp conjectures. Preprint, 2015. arxiv:1510.06840 Google Scholar
Garoufalidis, S., Lauda, A., and , T., The colored HOMFLYPT function is $q$ -holonomic . Duke Math. J. 167(2018), no. 3, 397447.CrossRefGoogle Scholar
Grant, J., A generators and relations description of a representation category of ${U}_q\left(\mathrm{gl}\left(1\mid 1\right)\right)$ . Algebr. Geom. Topol. 16(2016), 509539.CrossRefGoogle Scholar
Hu, J., BMW algebra, quantized coordinate algebra and type C Schur–Weyl duality . Represent. Theory 15(2011), 162.CrossRefGoogle Scholar
Jones, V., A polynomial invariant for knots via von Neumann algebras . Bull. Amer. Math. Soc. (N.S.) 12(1985), no. 1, 103111.CrossRefGoogle Scholar
Kauffman, L. H., State models and the Jones polynomial . Topology 26(1987), no. 3, 395407.CrossRefGoogle Scholar
Kauffman, L. H., An invariant of regular isotopy . Trans. Amer. Math. Soc. 318(1990), no. 2, 417471.CrossRefGoogle Scholar
Khovanov, M., A categorification of the Jones polynomial . Duke Math. J. 101(2000), no. 3, 359426. arxiv:math.QA/9908171 CrossRefGoogle Scholar
Khovanov, M., sl(3) link homology . Algebr. Geom. Topol. 4(2004), 10451081. arxiv:0304375 CrossRefGoogle Scholar
Kim, D., Graphical calculus on representations of quantum Lie algebras. Ph.D. thesis, University of California, Davis, 2003. ProQuest LLC, Ann Arbor, MI.Google Scholar
Kuperberg, G., Spiders for rank 2 Lie algebras . Commun. Math. Phys. 180(1996), no. 1, 109151. arxiv:9712003 CrossRefGoogle Scholar
Lewark, L. and Lobb, A., New quantum obstructions to sliceness . Proc. Lond. Math. Soc. 112(2016), no. 1, 81114.CrossRefGoogle Scholar
Lobb, A., A slice genus lower bound from $sl(n)$ Khovanov–Rozansky homology . Adv. Math. 222(2009), no. 4, 12201276.CrossRefGoogle Scholar
Mackaay, M., Stošić, M., and Vaz, P., $sl(N)$ -link homology $\left(N\ge 4\right)$ using foams and the Kapustin–Li formula . Geom. Topol. 13(2009), no. 2, 10751128. arxiv:0708.2228 CrossRefGoogle Scholar
Morrison, S., A diagrammatic category for the representation theory of ${U}_q\left(\mathrm{sln}\right)$ . Ph.D. thesis, University of California, Berkeley, 2007. arxiv:0704.1503 Google Scholar
Murakami, H. and Ohtsuki, T., Quantum $Sp(n)$ invariant of links via an invariant of colored planar graphs . Kobe J. Math. 13(1996), 191202.Google Scholar
Murakami, H., Ohtsuki, T., and Yamada, S., Homfly polynomial via an invariant of colored plane graphs . Enseign. Math. (2) 44(1998), nos. 3–4, 325360.Google Scholar
Murakami, J., The Kauffman polynomial of links and representation theory . Osaka J. Math. 24(1987), no. 4, 745758.Google Scholar
Murasugi, K., The Jones polynomial and classical conjectures in knot theory . Topology 26(1987), no. 2, 187194.CrossRefGoogle Scholar
Ng, S.-H. and Schauenburg, P., Higher Frobenius–Schur indicators for pivotal categories . Contemp. Math. 441(2007), 6390.CrossRefGoogle Scholar
Ohtsuki, T., Notes for the talk “Quantum $Sp(n)$ invariant of links” at the workshop “Art of Low Dimensional Topology,” Kashikojima, November 1994. Personal correspondence, 2020.Google Scholar
Queffelec, H. and Rose, D. E. V., The ${sl}_n$ foam $2$ -category: a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality . Adv. Math. 302(2016), 12511339. arxiv:1405.5920 CrossRefGoogle Scholar
Queffelec, H. and Rose, D. E. V., Sutured annular Khovanov–Rozansky homology . Trans. Amer. Math. Soc. 370(2018), 12851319. arxiv:1506.08188 CrossRefGoogle Scholar
Queffelec, H., Rose, D. E. V., and Sartori, A., Annular evaluation and link homology. Preprint, 2019. arxiv:1802.04131 Google Scholar
Queffelec, H. and Sartori, A., Mixed quantum skew Howe duality and link invariants of type A . J. Pure Appl. Algebra 223(2019), 7, 27332779.CrossRefGoogle Scholar
Rasmussen, J., Some differentials on Khovanov–Rozansky homology . Geom. Topol. 19(2015), no. 6, 30313104. arxiv:0607544 CrossRefGoogle Scholar
Reshetikhin, N. Y. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups . Commun. Math. Phys. 1(1990), 126.CrossRefGoogle Scholar
Reshetikhin, N. Y. and Turaev, V. G., Invariants of 3-manifolds via link polynomials and quantum groups . Invent. Math. 103(1991), 547597.CrossRefGoogle Scholar
Rose, D. E. V. and Tubbenhauer, D., Symmetric webs, Jones–Wenzl recursions and $q$ -Howe duality . Int. Math. Res. Not. 2016(2016), no. 17, 52495290. arxiv:1501.00915 CrossRefGoogle Scholar
Rose, D. E. V. and Wedrich, P., Deformations of colored sl(n) link homologies via foams . Geom. Topol. 20(2016), no. 6, 34313517. arxiv:1501.02567 CrossRefGoogle Scholar
Rumer, G., Teller, E., and Weyl, H., Eine fur die Valenztheorie geeignete Basis der binaren Vektorinvarianten . Nachr. Ges. Wiss. Gottingen Math. Phys. Kl. 1932(1932), 499504.Google Scholar
Sartori, A. and Tubbenhauer, D., Webs and q-Howe dualities in types BCD . Trans. Amer. Math. Soc. 371(1987), no. 10, 73877431.CrossRefGoogle Scholar
Selinger, P., Autonomous categories in which $A\cong {A}^{\ast }$ . In: Proceedings of the 7th International Workshop on Quantum Physics and Logic, Oxford, 2010, pp. 151–160.Google Scholar
Selinger, P., A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.), New structures for physics, Lecture Notes in Physics, 813, Springer, New York, 2011, pp. 289355.Google Scholar
Snyder, N. and Tingley, P, The half-twist for ${U}_q(g)$ representations . Algebra Number Theory 3(2009), no. 7, 809834.CrossRefGoogle Scholar
Tatham, L., On the quantum type C spider. Ph.D. thesis, University of North Carolina at Chapel Hill, 2020.Google Scholar
Thistlethwaite, M. B., A spanning tree expansion of the Jones polynomial . Topology 26(1987), no. 3, 297309.CrossRefGoogle Scholar
Tuba, I. and Wenzl, H., On braided tensor categories of type BCD . J. Reine Angew. Math. 581(2005), 3169.CrossRefGoogle Scholar
Tubbenhauer, D., Vaz, P., and Wedrich, P., Super q-Howe duality and web categories . Algebr. Geom. Topol. 17(2017), 37033749.CrossRefGoogle Scholar
Webster, B., Knot invariants and higher representation theory . Mem. Amer. Math. Soc. 250(2017), 1141. arxiv:1309.3796 Google Scholar
Wu, H., On the quantum filtration of the Khovanov–Rozansky cohomology . Adv. Math. 221(2009), no. 1, 54139.CrossRefGoogle Scholar