Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T02:40:40.245Z Has data issue: false hasContentIssue false

Early identification of autism spectrum disorder in children with CHD attending a Cardiac Developmental Outcomes Program

Published online by Cambridge University Press:  19 July 2023

Faridis Serrano*
Affiliation:
Department of Pediatrics, Division of Critical Care Medicine, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
Danielle Guffey
Affiliation:
Baylor College of Medicine, Dan L. Duncan Institute for Clinical and Translational Research, Houston, TX, USA
Lara Shekerdemian
Affiliation:
Department of Pediatrics, Division of Critical Care Medicine, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
Lisa Noll
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
Robert G. Voigt
Affiliation:
Department of Pediatrics, Division of Developmental Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
Sonia Monteiro
Affiliation:
Department of Pediatrics, Division of Developmental Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
*
Corresponding author: F. Serrano; Email: fxserra2@texaschildrens.org

Abstract

Objective:

To determine the prevalence and timing of autism spectrum disorder diagnosis in a cohort of congenital heart disease (CHD) patients receiving neurodevelopmental follow-up and identify associated risk factors.

Method:

Retrospective single-centre observational study of 361 children undergoing surgery for CHD during the first 6 months of life. Data abstracted included age at autism spectrum disorder diagnosis, child and maternal demographics, and medical history.

Results:

Autism spectrum disorder was present in 9.1% of children with CHD, with a median age at diagnosis of 34 months and 87.9% male. Prematurity, history of post-operative extracorporeal membrane oxygenation, and seizures were higher among those with autism (p = 0.013, p = 0.023, p = 0.001, respectively). Infants with autism spectrum disorder were older at the time of surgery (54 days vs 13.5 days, p = 0.002), and infants with surgery at ≥ 30 days of age had an increased risk of autism spectrum disorder (OR 2.31; 95% CI =1.12, 4.77, p = 0.023). On multivariate logistic regression analysis, being male (OR 4.85, p = 0.005), surgery ≥ 30 days (OR 2.46, p = 0.025), extracorporeal membrane oxygenation (OR 4.91, p = 0.024), and seizures (OR 4.32, p = 0.003) remained associated with increased odds for autism spectrum disorder. Maternal age, race, ethnicity, and surgical complexity were not associated.

Conclusions:

Children with CHD in our cohort had more than three times the risk of autism spectrum disorder and were diagnosed at a much earlier age compared to the general population. Several factors (male, surgery at ≥ 30 days, post-operative extracorporeal membrane oxygenation, and seizures) were associated with increased odds of autism. These findings support the importance of offering neurodevelopmental follow-up after cardiac surgery in infancy.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.Google Scholar
Gilboa, SM, Devine, OJ, Kucik, JE, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation 2016; 134: 101109.Google Scholar
Martin, GR, Jonas, RA. Surgery for congenital heart disease: improvements in outcomes. Am J Perinatol 2018; 35: 557560.Google Scholar
Gaynor, JW, Stopp, C, Wypij, D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015; 135: 816825.Google Scholar
Brosig, CL, Bear, L, Allen, S, et al. Preschool neurodevelopmental outcomes in children with congenital heart disease. J Pediatr 2017; 183: 8086 e81.CrossRefGoogle ScholarPubMed
Calderon, J, Bellinger, DC. Executive function deficits in congenital heart disease: why is intervention important? Cardiol Young 2015; 25: 12381246.CrossRefGoogle Scholar
DeMaso, DR, Calderon, J, Taylor, GA, et al. Psychiatric disorders in adolescents with single ventricle congenital heart disease. Pediatrics 2017; 139: e20162241.CrossRefGoogle ScholarPubMed
Bellinger, DC. Are children with congenital cardiac malformations at increased risk of deficits in social cognition? Cardiol Young 2008; 18: 39.Google Scholar
Hultman, CM, Sparen, P, Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology 2002; 13: 417423.Google Scholar
Razzaghi, H, Oster, M, Reefhuis, J. Long-term outcomes in children with congenital heart disease: national health interview survey. J Pediatr 2015; 166: 119124.Google Scholar
Wier, ML, Yoshida, CK, Odouli, R, Grether, JK, Croen, LA. Congenital anomalies associated with autism spectrum disorders. Dev Med Child Neurol 2006; 48: 500507.Google Scholar
Hyman, SL, Levy, SE, Myers, SM. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics 2020; 145: e20193447.Google Scholar
Kuzniewicz, MW, Wi, S, Qian, Y, Walsh, EM, Armstrong, MA, Croen, LA. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr. 2014; 164: 2025.Google Scholar
Maenner, MJ, Shaw, KA, Bakian, AV, et al. Prevalence and characteristics of autism spectrum disorder among children Aged 8 Years - autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ 2021; 70: 116.CrossRefGoogle Scholar
Shaw, KA, Maenner, MJ, Bakian, AV, et al. Early identification of autism spectrum disorder among children Aged 4 Years - autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ 2021; 70: 114.Google Scholar
Bean Jaworski, JL, Flynn, T, Burnham, N, et al. Rates of autism and potential risk factors in children with congenital heart defects. Congenit Heart Dis 2017; 12: 421429.Google Scholar
Tan, A, Semmel, ES, Wolf, I, Hammett, B, Ilardi, D. Implementing standard screening for autism spectrum disorder in CHD. Cardiol Young 2020; 30: 11181125.Google Scholar
Sigmon, ER, Kelleman, M, Susi, A, Nylund, CM, Oster, ME. Congenital heart disease and autism: a case-control study. Pediatrics 2019; 144: e20184114.Google Scholar
Tsao, PC, Lee, YS, Jeng, MJ, et al. Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: a nationwide population-based longitudinal study. Eur Child Adolesc Psychiatry 2017; 26: 13511359.Google Scholar
Pierce, K, Gazestani, VH, Bacon, E, et al. Evaluation of the diagnostic stability of the early autism spectrum disorder phenotype in the general population starting at 12 Months. JAMA Pediatr 2019; 173: 578587.Google Scholar
Shaw, KA, McArthur, D, Hughes, MM, et al. Progress and disparities in early identification of autism spectrum disorder: autism and developmental disabilities monitoring network, 2002-2016. J Am Acad Child Adolesc Psychiatry 2022; 61: 905914.CrossRefGoogle ScholarPubMed
Monteiro, SA, Serrano, F, Tsang, R, et al. Ancillary referral patterns in infants after initial assessment in a cardiac developmental outcomes clinic. Congenital Heart Dis 2019; 14: 797802.CrossRefGoogle Scholar
American Psychiatric Association. Neurodevelopmental disorders. In Diagnostic and statistical manual of mental disorders (5th ed., text rev.)., 2022.Google Scholar
Schopler, E, Van Bourgondien, ME, Wellman, GJ, Love, SR. Childhood Autism Rating Scale. In. 2nd edn. Western Psychological Services, Los Angeles, CA, 2010.Google Scholar
Lord, CRM, DiLavore, PC, Risi, S, Gotham, K, Bishop, S. Autism Diagnostic Observation Schedule. In. 2nd edn. Western Psychological Services, Torrence, CA, 2012.Google Scholar
Luyster, R, Gotham, K, Guthrie, W, et al. The autism diagnostic observation schedule-toddler module: a new module of a standardized diagnostic measure for autism spectrum disorders. J Autism Dev Disord 2009; 39: 13051320.Google Scholar
MacKenzie, KT, Mazefsky, CA, Eack, SM. Obtaining a first diagnosis of autism spectrum disorder: descriptions of the diagnostic process and correlates of parent satisfaction from a national sample. J Autism Dev Disord 2022. DOI: 10.1007/s10803-022-05673-1.Google Scholar
Dawson, G, Rogers, S, Munson, J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the early start denver model. Pediatrics 2010; 125: e1723.CrossRefGoogle ScholarPubMed
Eapen, V, Crncec, R, Walter, A. Clinical outcomes of an early intervention program for preschool children with autism spectrum disorder in a community group setting. BMC Pediatr 2013; 13: 3.Google Scholar
Rogers, SJ, Estes, A, Lord, C, et al. Effects of a brief early start denver model (ESDM)-based parent intervention on toddlers at risk for autism spectrum disorders: a randomized controlled trial. J Am Acad Child Adolesc Psychiatry 2012; 51: 10521065.Google Scholar
Reichow, B. Overview of meta-analyses on early intensive behavioral intervention for young children with autism spectrum disorders. J Autism Dev Disord 2012; 42: 512520.Google Scholar
Goff, DA, Luan, X, Gerdes, M, et al. Younger gestational age is associated with worse neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg 2012; 143: 535542.Google Scholar
Pierrat, V, Marchand-Martin, L, Marret, S, et al. Neurodevelopmental outcomes at age 5 among children born preterm: EPIPAGE-2 cohort study. BMJ 2021; 373: n741.Google Scholar
Saemundsen, E, Ludvigsson, P, Hilmarsdottir, I, Rafnsson, V. Autism spectrum disorders in children with seizures in the first year of life - a population-based study. Epilepsia 2007; 48: 17241730.Google Scholar
Besag, FM. Epilepsy in patients with autism: links, risks and treatment challenges. Neuropsychiatr Dis Treat 2018; 14: 110.Google Scholar
Bellinger, DC, Wypij, D, Rivkin, MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation 2011; 124: 13611369.CrossRefGoogle ScholarPubMed
Rappaport, LA, Wypij, D, Bellinger, DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston circulatory arrest study group. Circulation 1998; 97: 773779.Google Scholar
Boyle, K, Felling, R, Yiu, A, et al. Neurologic outcomes after extracorporeal membrane oxygenation: a systematic review. Pediatr Crit Care Med 2018; 19: 760766.Google Scholar
Sadhwani, A, Cheng, H, Stopp, C, et al. Early neurodevelopmental outcomes in children supported with ECMO for cardiac indications. Pediatr Cardiol 2019; 40: 10721083.Google Scholar
Rosenthal, SB, Willsey, HR, Xu, Y, et al. A convergent molecular network underlying autism and congenital heart disease. Cell Syst 2021; 12: 10941107 e1096.Google Scholar