Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-31T16:17:55.570Z Has data issue: false hasContentIssue false

Estimating filling pressures in paediatric heart transplant recipients using echocardiographic parameters and B-type natriuretic peptide

Published online by Cambridge University Press:  24 June 2021

Bethany L. Wisotzkey*
Affiliation:
Pediatric Cardiology, Phoenix Children’s Hospital, Phoenix, AZ, USA
Bereketeab Haileselassie
Affiliation:
Pediatric Critical Care Medicine, Lucile Salter Packard Children’s Hospital at Stanford, Palo Alto, CA, USA
Neal Jorgensen
Affiliation:
Department of Biostatistics, University of Washington, Seattle, WA, USA
Erin L. Albers
Affiliation:
Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA
Mariksa S. Kemna
Affiliation:
Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA
Brian D. Soriano
Affiliation:
Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA
Aarti H. Bhat
Affiliation:
Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA
Richard A. Kronmal
Affiliation:
Department of Biostatistics, University of Washington, Seattle, WA, USA
Robert J. Bouccek
Affiliation:
Research Affiliate, Seattle Children’s Research Institute, Seattle, WA, USA
Yuk M. Law
Affiliation:
Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA
*
Author for correspondence: Dr B. L. Wisotzkey, MD, Pediatric Cardiology, Phoenix Children’s Hospital, 1919 E. Thomas Rd, Main Tower, Phoenix, AZ85016, USA. Tel: +602 933 2311. E-mail: bwisotzkey@phoenixchildrens.com

Abstract

Background:

Longitudinal evaluation of allograft diastolic function in paediatric heart transplant recipients is important for early detection of acute rejection, cardiac allograft vasculopathy, and graft dysfunction. Mean diastolic right atrial and pulmonary capillary wedge pressures obtained at catheterisation are the reference standards for assessment. Echocardiography is non-invasive and more suitable for serial surveillance, but individual parameters have lacked accuracy. This study aimed to identify covariates of post-transplant mean right atrial and pulmonary capillary wedge pressures, including B-type natriuretic peptide and certain echocardiographic parameters.

Methods:

A retrospective review of 143 scheduled cardiac catheterisations and echocardiograms from 56 paediatric recipients transplanted from 2007 to 2011 was performed. Samples with rejection were excluded. Univariate and multivariate linear regression models using backward selection were applied to a database consisting of B-type natriuretic peptide, haemodynamic, and echocardiographic data.

Results:

Ln B-type natriuretic peptide, heart rate z-score, left ventricular end-diastolic dimension z-score, mitral E/e’, and percent interventricular septal thickening in systole were independently associated with mean right atrial pressure. Ln B-type natriuretic peptide, heart rate z-score, left ventricular end-diastolic dimension z-score, left ventricular mass (observed/predicted), and mitral E/e’ were independently associated with mean pulmonary capillary wedge pressure. Covariates of B-type natriuretic peptide included mean pulmonary artery and pulmonary capillary wedge pressures, height, haemoglobin, fractional shortening, percent interventricular septal thickening in systole, and pulmonary vascular resistance index.

Conclusions:

B-type natriuretic peptide and echocardiographic indices of diastolic function were independently related to post-transplant mean right atrial and pulmonary capillary wedge pressures in paediatric heart transplant recipients without rejection.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Estep, JD. Echocardiographic identification of acute cellular rejection in heart transplant recipients. J Am Soc Echocardiogr 2015; 28: 11571160.CrossRefGoogle ScholarPubMed
Boruta, RJ, Miyamoto, SD, Younoszai, AK, et al. Worsening in longitudinal strain and strain rate anticipates development of pediatric transplant coronary artery vasculopathy as soon as 1 year following transplant. Pediatr Cardiol 2018; 39: 129139.CrossRefGoogle Scholar
Park, MH, Scott, RL, Uber, PA, et al. Usefulness of B-type natriuretic peptide levels in predicting hemodynamic perturbations after heart transplantation despite preserved left ventricular systolic function. Am J Cardiol 2002; 90: 13261329.CrossRefGoogle ScholarPubMed
Feingold, BJ, Picarsic, A, Lesniak, BA, et al. Late graft dysfunction after pediatric heart transplantation is associated with fibrosis and microvasculopathy by automated, digital whole-slide analysis. J Heart Lung Transplant 2017; 36: 13361343.CrossRefGoogle ScholarPubMed
Mehra, MR, Crespo-Leiro, MG, Dipchand, A, et al. International society for heart and lung transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy. J Heart Lung Transplant 2010; 29: 717727.CrossRefGoogle ScholarPubMed
Kindel, SJ, Law, YM, Chin, C, et al. Improved detection of cardiac allograft vasculopathy: a multi-institutional analysis of functional parameters in pediatric heart transplant recipients. J Am Coll Cardiol 2015; 66: 547557.CrossRefGoogle ScholarPubMed
Hall, E, Glatz, A, Quartermain, M, et al. Brain-type natriuretic peptide correlates with right heart pressures in a cross section of pediatric heart transplant recipients. Pediatr Transplant 2011; 15: 7074.CrossRefGoogle Scholar
Stehlik, J, Starling, RC, Movsesian, MA, et al. Utility of long-term surveillance endomyocardial biopsy: a multi-institutional analysis. J Heart Lung Transplant 2006; 25: 14021409.10.1016/j.healun.2006.10.003CrossRefGoogle ScholarPubMed
Lam, JE, Lin, EP, Alexy, R, et al. Anesthesia and the pediatric cardiac catheterization suite: a review. Pediatr Anaesth 2015; 25: 127134.CrossRefGoogle ScholarPubMed
Lindblade, CL, Chun, DS, Darragh, RK, et al. Value of plasma B-type natriuretic peptide as a marker for rejection in pediatric heart transplant recipients. Am J Cardiol 2005; 95: 909911.CrossRefGoogle ScholarPubMed
Lunze, FI, Colan, SD, Gauvreau, K, et al. Cardiac allograft function during the first year after transplantation in rejection-free children and young adults. Circ Cardiovasc Imaging 2012; 5: 756764.CrossRefGoogle ScholarPubMed
Tallaj, JA, Kirklin, JK, Brown, RN, et al. Post-heart transplant diastolic dysfunction is a risk factor for mortality. J Am Coll Cardiol 2007; 50: 10641069.CrossRefGoogle ScholarPubMed
Maeder, MT, Karapanagiotidis, S, Dewar, EM, et al. Accuracy of Doppler echocardiography to estimate key hemodynamic variables in subjects with normal left ventricular ejection fraction. J Card Fail 2011; 17: 405412.10.1016/j.cardfail.2010.12.003CrossRefGoogle ScholarPubMed
Oh, JK, Appleton, CP, Hatle, LK, et al. The noninvasive assessment of left ventricular diastolic function with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 1997; 10: 246270.CrossRefGoogle ScholarPubMed
Nagueh, SF, Lakkis, NM, Middleton, KJ, et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 1999; 99: 254261.CrossRefGoogle ScholarPubMed
Ommen, SR, Nishimura, RA, Appleton, CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 2000; 102: 17881794.CrossRefGoogle ScholarPubMed
Garrido, IP, Pascual-Figal, DA, Nicolás, F, et al. Usefulness of serial monitoring of B-type natriuretic peptide for the detection of acute rejection after heart transplantation. Am J Cardiol 2009; 103: 11491153.CrossRefGoogle ScholarPubMed
Nakao, S, Goda, A, Yuba, M, et al. Characterization of left ventricular filling abnormalities and its relation to elevated plasma brain natriuretic peptide level in acute to chronic diastolic heart failure. Circ J 2007; 71: 14121417.CrossRefGoogle ScholarPubMed
de Bold, AJ, de Bold, ML. Determinants of natriuretic peptide production by the heart: basic and clinical implications. J Investig Med 2005; 53: 371377.CrossRefGoogle ScholarPubMed
Ationu, A, Sorensen, K, Whitehead, B, et al. Ventricular expression of brain natriuretic peptide gene following orthotopic cardiac transplantation in children – a 3 year follow up. Cardiovasc Res 1993; 27: 21352139.CrossRefGoogle Scholar
Drożdż, T, Kwinta, P, Kordon, Z, et al. B-type natriuretic peptide as a marker of cardiac dysfunction in children with chronic kidney disease. Pol Merkur Lekarski 2018; 44: 171176.Google ScholarPubMed
Hill, SA, Booth, RA, Santaguida, PL, et al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev 2014; 19: 565.CrossRefGoogle Scholar
Maisel, AS, Clopton, P, Krishnaswamy, P, et al. Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: results from the Breathing Not Properly (BNP) multinational study. Am Heart J 2004; 147: 10781084.CrossRefGoogle Scholar
Cursack, GC, Crespo-Leiro, MG, Paniagua-Martín, MJ, et al. Chronic anemia in heart transplant patients: prevalence, predisposing factors and prognostic significance. Rev Esp Cardiol 2007; 60: 11441150.10.1157/13111786CrossRefGoogle ScholarPubMed
Mehra, MR, Uber, PA, Walther, D, et al. Gene expression profiles and B-type natriuretic peptide elevation in heart transplantation: more than a hemodynamic marker. Circulation 2006; 114: I21I26.CrossRefGoogle ScholarPubMed
Stewart, S, Winters, GL, Fishbein, MC, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 2005; 24: 17101720.CrossRefGoogle Scholar
Kobashigawa, J, Crespo-Leiro, MG, Ensminger, SM, et al. Report from a consensus conference on antibody-mediated rejection in heart transplantation. J Heart Lung Transplant 2011; 30: 252269.10.1016/j.healun.2010.11.003CrossRefGoogle ScholarPubMed
Sluysmans, T, Colan, SD. Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 2005; 99: 445457.CrossRefGoogle ScholarPubMed
Brumback, LC, Kronmal, R, Heckbert, SR, et al. Body size adjustments for left ventricular mass by cardiovascular magnetic resonance and their impact on left ventricular hypertrophy classification. Int J Cardiovasc Imaging 2010; 26: 459468.CrossRefGoogle ScholarPubMed
Tissot, C, Singh, Y, Sekarski, N. Echocardiographic evaluation of ventricular function – for the neonatologist and pediatric intensivist. Front Pediatr 2018; 6: 79.CrossRefGoogle ScholarPubMed
Nagueh, S, Smiseth, O, Dokainish, H, et al. Mean right atrial pressure for estimation of left ventricular filling pressure in patients with normal left ventricular ejection fraction: invasive and noninvasive validation. J Am Soc Echocardiogr 2018; 31: 799806.CrossRefGoogle ScholarPubMed
Lu, JC, Magdo, HS, Yu, S, et al. Usefulness of diastolic train measurements in predicting elevated left ventricular filling pressure and risk of rejection or coronary artery vasculopathy in pediatric heart transplant recipients. Am J Cardiol 2016; 117: 15331538.CrossRefGoogle ScholarPubMed
Daud, A, Xu, D, Revelo, MP, et al. Microvascular loss and diastolic dysfunction in severe symptomatic cardiac allograft vasculopathy. Circ Heart Failure 2018; 11: e004759.10.1161/CIRCHEARTFAILURE.117.004759CrossRefGoogle ScholarPubMed
Godown, J, Harris, MT, Burger, J, et al. Variation in the use of surveillance endomyocardial biopsy among pediatric heart transplant centers over time. Pediatr Transplant 2015; 19: 612617.CrossRefGoogle ScholarPubMed
Wagner, K, Oliver, MC, Boyle, GJ, et al. Endomyocardial biopsy in pediatric heart transplant recipients: a useful exercise? (Analysis of 1,169 biopsies). Pediatr Transplant 2000; 4: 186192.10.1034/j.1399-3046.2000.00100.xCrossRefGoogle Scholar
Zhorne, D, Petit, CJ, Ing, FF, et al. A 25-year experience of endomyocardial biopsy safety in infants. Catheter Cardiovasc Interv 2013; 82: 797801.10.1002/ccd.24802CrossRefGoogle ScholarPubMed
Badano, LP, Miglioranza, MH, Edvardsen, T, et al. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging 2015; 16: 919948.CrossRefGoogle ScholarPubMed
Chang, SN, Juang, JJ, Tsai, CT, et al. A novel integrated score index of echocardiographic indices for the evaluation of left ventricular diastolic function. PLoS One 2015; 10: e0142175.CrossRefGoogle ScholarPubMed
Kim, HL, Zo, JH, Seo, JB, et al. Additional value of lateral tissue Doppler imaging in the assessment of diastolic dysfunction among subjects with pseudonormal pattern of mitral inflow. Cardiovasc Ultrasound 2013; 11: 31.CrossRefGoogle ScholarPubMed
Stengel, SM, Allemann, Y, Zimmerli, M, et al. Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection. Heart 2011; 86: 432437.10.1136/heart.86.4.432CrossRefGoogle Scholar
Shaw, SM, Williams, SG. Is brain natriuretic peptide clinically useful after cardiac transplantation? J Heart Lung Transplant 2006; 25: 13961401.CrossRefGoogle ScholarPubMed
Lan, YT, Chang, RK, Alejos, JC, et al. B-type natriuretic peptide in children after cardiac transplantation. J Heart Lung Transplant 2004; 23: 558563.CrossRefGoogle ScholarPubMed