Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-25T04:20:13.769Z Has data issue: false hasContentIssue false

Neurocognitive functioning in young adults with congenital heart disease: insights from a case-control study

Published online by Cambridge University Press:  23 July 2021

Ladina Schlosser
Affiliation:
Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
Nora Kessler
Affiliation:
Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
Maria Feldmann
Affiliation:
Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
Flavia Wehrle
Affiliation:
Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
Sarah Rometsch
Affiliation:
Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
Matthias Greutmann
Affiliation:
Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
Angela Oxenius
Affiliation:
Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
Peter Brugger
Affiliation:
Psychiatric University Clinic PUK, University Hospital Zurich, Zurich, Switzerland Neuropsychology Unit, Valens Rehabilitation Centre, Valens, Switzerland
Beatrice Latal*
Affiliation:
Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
*
Author for correspondence: Dr Beatrice Latal, MD, MPH, Child Development Center, University Children’s Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland. Tel: +41 44 266 79 24. E-mail: bea.latal@kispi.uzh.ch

Abstract

Background:

While there is evidence that cognitive impairment of children with congenital heart disease (CHD) may persist into adolescence, little is known about the spectrum of neurocognitive functioning of young adults with this disorder. The aim of this study was to assess neurocognitive functioning in a population of young adults with different types of CHD.

Methods:

Cross-sectional cohort study in young adults with CHD and a group-matched healthy control group. We assessed neurocognitive and general intellectual functioning with a comprehensive battery of standardised neuropsychological tests. In addition to task-based assessments, questionnaire data of executive dysfunctions in everyday life were measured with the Behaviour Rating Inventory of Executive Function – Adult Version.

Results:

A total of 67 patients (55% men) with CHD and 55 healthy controls (51% men) were included for analysis. Mean age at assessment was 26.9 (3.68) and 26.0 (3.32) years, respectively. The CHD group performed poorer in the domains of Executive Functions, Memory, Attention & Speed, and general intellectual functioning. Patients with a CHD of severe complexity were more affected than patients with simple or moderate complexity. Behaviour Rating Inventory of Executive Function – Adult Version scores indicated that patients’ self-rated deficits in behaviour regulation in everyday life was higher compared with healthy controls.

Conclusion:

Our findings indicate lower neurocognitive functioning in young adults with a CHD, particularly in those with severe defect complexity. In view of the potentially enhanced risk for cerebrovascular and neurodegenerative disease in this patient group as reported in the literature, systematic longitudinal monitoring of cognitive functioning is recommended.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Peter Brugger and Beatrice Latal are both authors contributed equally.

References

van der Linde, D, Konings, EEM, Slager, M, et al. Birth prevalence of congenital heart disease worldwide. J Am Coll Cardiol 2011; 58: 22412247.CrossRefGoogle ScholarPubMed
Marelli, A, Miller, SP, Marino, BS, Jefferson, AL, Newburger, JW. Brain in Congenital heart disease across the lifespan: the cumulative burden of injury. Circulation 2016; 133: 19511962.CrossRefGoogle ScholarPubMed
Moons, P, Lore Bobijn, RN, Werner Budts, RN, Belmans, A, Gewillig, M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 2010; 122: 22642272.CrossRefGoogle ScholarPubMed
Diller, G-P, Kempny, A, Alonso-Gonzalez, R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation 2015; 132: 21182125.CrossRefGoogle Scholar
Greutmann, M, Tobler, D, Kovacs, AH, et al. Increasing mortality burden among adults with complex congenital heart disease: mortality burden of adults with complex CHD. Congenit Heart Dis 2015; 10: 117127.CrossRefGoogle Scholar
Claessens, NHP, Kelly, CJ, Counsell, SJ, Benders, MJNL. Neuroimaging, cardiovascular physiology, and functional outcomes in infants with congenital heart disease. Dev Med Child Neurol 2017; 59: 894902.CrossRefGoogle ScholarPubMed
Calderon, J, Bellinger, DC. Executive function deficits in congenital heart disease: why is intervention important? Cardiol Young 2015; 25: 12381246.CrossRefGoogle ScholarPubMed
Liamlahi, R, von Rhein, M, Bührer, S, et al. Motor dysfunction and behavioural problems frequently coexist with congenital heart disease in school-age children. Acta Paediatr 2014; 103: 752758.Google ScholarPubMed
Tyagi, M, Austin, K, Stygall, J, Deanfield, J, Cullen, S, Newman, SP. What do we know about cognitive functioning in adult congenital heart disease? Cardiol Young 2014; 24: 1319.CrossRefGoogle ScholarPubMed
Bellinger, DC, Newburger, JW, Wypij, D, Kuban, KCK, duPlessis, AJ, Rappaport, LA. Behaviour at 8 years in children with surgically corrected transposition: the Boston circulatory arrest trial. Cardiol Young 2009; 19: 86.CrossRefGoogle ScholarPubMed
Bellinger, DC, Newburger, JW. Neuropsychological, psychosocial, and quality-of-life outcomes in children and adolescents with congenital heart disease. Prog Pediatr Cardiol 2010; 29: 8792.CrossRefGoogle Scholar
Mills, R, McCusker, CG, Tennyson, C, Hanna, D. Neuropsychological outcomes in CHD beyond childhood: a meta-analysis. Cardiol Young 2018; 28: 421431.CrossRefGoogle ScholarPubMed
von Rhein, M, Scheer, I, Loenneker, T, Huber, R, Knirsch, W, Latal, B. Structural brain lesions in adolescents with congenital heart disease. J Pediatr 2011; 158: 984989.CrossRefGoogle ScholarPubMed
Daliento, L, Mapelli, D, Russo, G, et al. Health related quality of life in adults with repaired tetralogy of Fallot: psychosocial and cognitive outcomes. Heart 2005; 91: 213218.CrossRefGoogle ScholarPubMed
Eide, MG, Skjærven, R, Irgens, LM, Bjerkedal, T, Øyen, N. Associations of birth defects with adult intellectual performance, disability and mortality: population-based cohort study. Pediatr Res 2006; 59: 848853.CrossRefGoogle ScholarPubMed
Utens, EM, Versluis-Den Bieman, HJ, Verhulst, FC, Meijboom, FJ, Erdman, RA, Hess, J. Psychopathology in young adults with congenital heart disease. Follow-up results. Eur Heart J 1998; 19: 647651.CrossRefGoogle ScholarPubMed
Utens, EM, Verhulst, FC, Erdman, RA, et al. Psychosocial functioning of young adults after surgical correction for congenital heart disease in childhood: a follow-up study. J Psychosom Res 1994; 38: 745758.CrossRefGoogle ScholarPubMed
Keir, M, Ebert, P, Kovacs, AH, et al. Neurocognition in adult congenital heart disease: how to monitor and prevent progressive decline. Can J Cardiol 2019; 35: 16751685.CrossRefGoogle ScholarPubMed
Rometsch, S, Greutmann, M, Latal, B, et al. Predictors of quality of life in young adults with congenital heart disease. Eur Heart J 2019; 5: 161168.Google ScholarPubMed
Largo, RH, Pfister, D, Kundu, S, Lipp, A, Due, G. Significance of prenatal, perinatal and postnatal factors in the development of agapreterm infants at five to seven. Dev Med Child Neurol 1989; 31: 440456.CrossRefGoogle ScholarPubMed
Warnes, CA, Liberthson, R, Danielson, G, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 2001; 37: 11701175.CrossRefGoogle ScholarPubMed
Schnider, A. Verhaltensneurologie: Die Neurologische Seite Der Neuropsychologie. Thieme, Stuttgart, 2004.CrossRefGoogle Scholar
Petermann, F. Wechsler Adult Intelligence Scale (WAIS-IV; Deutsche Version). Pearson, Frankfurt, 2012.Google Scholar
Daseking, M, Petermann, F, Waldmann, H-C. Schätzung der allgemeinen intelligenz mit einer kurzform der WAIS-IV bei neurologischen Fragestellungen. Aktuelle Neurol 2014; 41: 349355.Google Scholar
Tombaugh, TN. Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 2004; 19: 203214.CrossRefGoogle Scholar
Benedict, R. Brief Visual Memory Test-Revised: Professional Manual. Psychological Assessment Resources, Odessa, FL, 1997.Google Scholar
Zimmermann, P, Fimm, B. Testbatterie Zur Aufmerksamkeitsleistung (TAP). Psytest, Würselen, Germany, 2007.Google Scholar
Tombaugh, TN. Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 2004; 19: 203214.CrossRefGoogle Scholar
Meyers, JE, Meyers, KR. Rey complex figure test under four different administration procedures. Clin Neuropsychol 1995; 9: 6367.CrossRefGoogle Scholar
Aschenbrenner, S, Tucha, O, Lange, KW. Regensburger Wortflüssigkeits-Test: RWT. Hogrefe, Verlag für Psychologie, Gottigen, 2000.Google Scholar
Haid, T, Martl, C, Schubert, F, Wenzl, M, Kofler, M, Saltuari, L. Der ‘“HAMASCH 5 Punkt Test”’-erste Normierungsergebnisse. Zeitschrift für Neuropsychol 2000; 13: 233.Google Scholar
Delis, DC, Kaplan, E, Kramer, JH. Delis-Kaplan Executive Function System (D-KEFS). Examiner’s Manual. The Psychological Corporation, San Antonio, TX, 2001.Google Scholar
Tewes, U, Neubauer, A, von Alster, M. Wechsler Intelligenztest für Erwachsene (WIE). Hans Huber, Bern, 2006.Google Scholar
Härting, C, Markowitsch, HJ, Neufeld, H, Calabrese, P, Deisinger, K, Kessler, J. Wechsler Gedächtnis Test-Revidierte Fassung (WMS-R). Hans Huber, Bern, 2000.Google Scholar
Metzler, P. Standardisierte Link’sche Probe Zur Beurteilung Exekutiver Funktionen: SLP. Swets Test Service, Frankfurt am Main, 2000.Google Scholar
Verbruggen, F, Logan, GD, Stevens, MA. STOP-IT: windows executable software for the stop-signal paradigm. Behav Res Methods 2008; 40: 479483.CrossRefGoogle ScholarPubMed
Roth, RM, Gioia, GA. Behavior Rating Inventory of Executive Function – Adult Version. Psychological Assessment Resources, Lutz, FL, 2005.Google Scholar
Benjamini, Y, Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 1995; 57: 289300.Google Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Routledge, Abingdon, England, 1988.Google Scholar
Ferguson, CJ. An effect size primer: A guide for clinicians and researchers. In: Kazdin, AE (ed). Methodological Issues and Strategies in Clinical Research, 4 th edn. American Psychological Association, Washington, 2016: 301310.CrossRefGoogle Scholar
Kasmi, L, Calderon, J, Montreuil, M, et al. Neurocognitive and psychological outcomes in adults with dextro-transposition of the great arteries corrected by the arterial switch operation. Ann Thorac Surg 2018; 105: 830836.CrossRefGoogle ScholarPubMed
Ilardi, D, Ono, KE, McCartney, R, Book, W, Stringer, A. Neurocognitive functioning in adults with congenital heart disease. Congenit Heart Dis 2017; 12: 166173.CrossRefGoogle ScholarPubMed
Løvstad, M, Sigurdardottir, S, Andersson, A, et al. Behavior rating inventory of executive function adult version in patients with neurological and neuropsychiatric conditions: symptom levels and relationship to emotional distress. J Int Neuropsychol Soc 2016; 22: 682694.CrossRefGoogle ScholarPubMed
Klouda, L, Franklin, WJ, Saraf, A, Parekh, DR, Schwartz, DD. Neurocognitive and executive functioning in adult survivors of congenital heart disease. Congenit Heart Dis 2017; 12: 9198.CrossRefGoogle ScholarPubMed
Bagge, CN, Henderson, V, Laursen, HB, Adelborg, K, Olsen, M, Madsen, NL. Risk of dementia in adults with congenital heart disease: population-based cohort study. Circulation 2018; 137: 19121920.CrossRefGoogle ScholarPubMed
Supplementary material: File

Schlosser et al. supplementary material

Schlosser et al. supplementary material

Download Schlosser et al. supplementary material(File)
File 49.9 KB