Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-27T20:33:29.860Z Has data issue: false hasContentIssue false

The prognostic significance of early troponin levels in patients undergoing aortic ridge surgery

Published online by Cambridge University Press:  29 June 2023

Kenan Abdurrahman Kara*
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Ergin Arslanoglu
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Fatih Yigit
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Cuneyt Arkan
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Esra Ozcan
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Omer Faruk Akardere
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Nihat Cine
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Eylem Tuncer
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
Nilufer Cetiner
Affiliation:
Pediatric Cardiology Department, Kosuyolu High Specialization Training and Research Hospital, Istanbul, Turkey
Hakan Ceyran
Affiliation:
Pediatric Cardiovascular Surgery Department, Kosuyolu High Specialization Training And Research Hospital, Istanbul, Turkey
*
Corresponding author: K. A. Kara; Email: kenankaradoc@gmail.com

Abstract

Subaortic stenosis is a CHD that can lead to left ventricular hypertrophy, heart failure, and aortic valve damage if left untreated. The gold standard treatment for subaortic stenosis is septal myectomy. However, there is no clear consensus on the surgical margins required for adequate muscle resection. In this retrospective study, we reviewed the records of 83 patients who underwent subaortic stenosis surgery between 2012 and 2020 to investigate the effect of early troponin levels on prognosis. We excluded patients with additional cardiac pathologies, hypertrophic obstructive cardiomyopathy, and valvular aortic stenosis.

Troponin levels were recorded in the early post-operative period, and patients were monitored for complications such as ventricular arrhythmia, left ventricular systolic dysfunction, infective endocarditis, and pacemaker implantation. The troponin levels were significantly higher in the patients who had septal myectomy. The degree of myectomy affected the risk of complications in the early post-operative period and recurrence in the later period. However, when the gradient was substantially or completely removed by myectomy, patients experienced significant symptom improvement in the early post-operative period, and their late survival was equivalent to that of healthy individuals of the same age.

Our findings suggest that monitoring troponin levels in patients undergoing septal myectomy may be beneficial in predicting the risk of complications. However, further studies are needed to establish the optimal surgical technique and extent of muscle resection required for subaortic stenosis treatment. Our study adds to the existing knowledge of the benefits and risks associated with septal myectomy as a treatment option for subaortic stenosis.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cohen, L, Bennani, R, Hulin, S, et al. Mitral valvar anomalies and discrete subaortic stenosis. Cardiol Young 2002; 12: 138146. DOI: 10.1017/s104795110200029x.CrossRefGoogle ScholarPubMed
Talwar, S, Anand, A, Gupta, SK, et al. Resection of subaortic membrane for discrete subaortic stenosis. J Card Surg 2017; 32: 430435. DOI: 10.1111/jocs.13160.CrossRefGoogle ScholarPubMed
Russell, DJ, Prior, D, McLellan, A. Subaortic stenosis: what lies beneath. CASE (Phila) 2018; 2: 135138. DOI: 10.1016/j.case.2018.01.005.Google ScholarPubMed
Cao, Y, Yang, S, Li, W, Li, L, Su, J, Fan, X. Surgical repair of subaortic stenosis resection: 10 years of single-center experience in 65 patients. J Card Surg 2021; 36: 35933598. DOI: 10.1111/jocs.15886.CrossRefGoogle ScholarPubMed
Kang, SH, Kim, IJ, Kim, WJ. Adult presentation of subaortic stenosis with subaortic membrane treated with surgical removal. J Cardiovasc Dev Dis 2022; 9: 36. DOI: 10.3390/jcdd9020036.Google ScholarPubMed
Nguyen, A, Schaff, HV. Surgical myectomy: subaortic, Midventricular, and apical. Cardiol Clin 2019; 37: 95104. DOI: 10.1016/j.ccl.2018.08.006.CrossRefGoogle ScholarPubMed
Lopes, R, Lourenço, P, Gonçalves, A, Cruz, C, Maciel, MJ. The natural history of congenital subaortic stenosis. Congenit Heart Dis 2011; 6: 417423. DOI: 10.1111/j.1747-0803.2011.00550.x.CrossRefGoogle ScholarPubMed
Kuralay, E, Ozal, E, Bingöl, H, Cingöz, F, Tatar, H. Discrete subaortic stenosis: assessing adequacy of myectomy by transesophageal echocardiography. J Card Surg 1999; 14: 348353. DOI: 10.1111/j.1540-8191.1999.tb01007.x.CrossRefGoogle ScholarPubMed
Valeske, K, Huber, C, Mueller, M, et al. The dilemma of subaortic stenosis--a single center experience of 15 years with a review of the literature. Thorac Cardiovasc Surg 2011; 59: 293297. DOI: 10.1055/s-0030-1271039.CrossRefGoogle ScholarPubMed
Carlson, L, Pickard, S, Gauvreau, K, et al. Preoperative factors that predict recurrence after repair of discrete subaortic stenosis. Ann Thorac Surg 2021; 111: 16131619. DOI: 10.1016/j.athoracsur.2020.05.140.CrossRefGoogle ScholarPubMed
Ezon, DS. Fixed subaortic stenosis: a clinical dilemma for clinicians and patients. Congenit Heart Dis 2013; 8: 450456. DOI: 10.1111/chd.12127.Google Scholar
Parry, AJ, Kovalchinb, JP, Suda, K, et al. Resection of subaortic stenosis; can a more aggressive approach be justified? Eur J Cardiothorac Surg 1999; 15: 631638.CrossRefGoogle ScholarPubMed
Donald, JS, Naimo, PS, d'Udekem, Y, et al. Outcomes of subaortic obstruction resection in children. Heart Lung Circ 2017; 26: 179186. DOI: 10.1016/j.hlc.2016.05.120.CrossRefGoogle ScholarPubMed
Serraf, A, Zoghby, J, Lacour-Gayet, F, et al. Surgical treatment of subaortic stenosis: a seventeen-year experience. J Thorac Cardiovasc Surg 1999; 117: 669678. DOI: 10.1016/S0022-5223(99)70286-2.CrossRefGoogle ScholarPubMed
Şahin, V, Demirpence, S, Tetik, F, Okur, FF, Alayunt, EA. Long-term functional results of patients operated for isolated discrete subaortic stenosis. Heart Surg Forum 2021; 24: E512E516. DOI: 10.1532/hsf.3821.CrossRefGoogle ScholarPubMed
Binsalamah, ZM, Spigel, ZA, Zhu, H, et al. Reoperation after isolated subaortic membrane resection. Cardiol Young 2019; 29: 13911396. DOI: 10.1017/S1047951119002336.CrossRefGoogle ScholarPubMed
Oliver, JM, González, A, Gallego, P, Sánchez-Recalde, A, Benito, F, Mesa, JM. Discrete subaortic stenosis in adults: increased prevalence and slow rate of progression of the obstruction and aortic regurgitation. J Am Coll Cardiol 2001; 38: 835842. DOI: 10.1016/s0735-1097(01)01464-4.CrossRefGoogle ScholarPubMed
Massé, DD, Shar, JA, Brown, KN, Keswani, SG, Grande-Allen, KJ, Sucosky, P. Discrete subaortic stenosis: perspective roadmap to a complex disease. Front Cardiovasc Med 2018; 5: 122. DOI: 10.3389/fcvm.2018.00122.CrossRefGoogle ScholarPubMed
Johnson, CA Jr, Siordia, JA, Robinson, DA, Sagebin, F, Knight, PA. Right mini-thoracotomy subaortic membrane resection. Innovations (Phila) 2018; 13: 428432. DOI: 10.1097/IMI.0000000000000564.CrossRefGoogle ScholarPubMed