Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-07T14:11:38.463Z Has data issue: false hasContentIssue false

Crystal chemistry of Na-rich rectorite from North Little Rock, Arkansas

Published online by Cambridge University Press:  02 January 2018

Jan Dietel*
Affiliation:
Institute of Geography and Geology, Ernst-Moritz-Arndt University Greifswald, 17487, Greifswald, Germany
Annett Steudel
Affiliation:
Competence Center for Material Moisture (CMM) and Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Laurence N. Warr
Affiliation:
Institute of Geography and Geology, Ernst-Moritz-Arndt University Greifswald, 17487, Greifswald, Germany
Katja Emmerich
Affiliation:
Competence Center for Material Moisture (CMM) and Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rectorite, a regular mixed layer mineral consisting of dioctahedral swelling and non-swelling 2:1 layers, from North Little Rock, Arkansas, was studied to define the crystal chemistry and structural parameters (e.g. layer charge of the different layers, presence of cis/trans-vacancies). X-ray diffraction, simultaneous thermal analysis coupled with mass spectrometry, X-ray fluorescence and cation exchange capacity are used to characterize this rectorite. The rectorite has a coefficient of variation (CV) of 0.19 and a cation exchange capacity of 60 cmol(+)/kg, as determined by the ammonium acetate method. The mineral is best described as a regular interstratification of brammallite-like and highcharged beidellite-like layers. Dehydration occurs at ≈118°C with a mass loss of 6.77% and dehydroxylation occurs in two steps at 470°C and 588°C with an overall mass loss of 4.67%. Peak decomposition of the mass spectrometer curve of evolved water shows ≈20% peak area with a maximum higher than 600°C, indicating ≈20% cis-vacant layers.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Ahn, J.H., Peacor, D.R. & Essene, E.J. (1985) Coexisting paragonite-phengite in blueshist eclogite: a TEM study. American Mineralogist, 70, 11931204.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. & Nichols, M.C., editors (1995) Rectorite. Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/ Google Scholar
Bailey, S.W. (1982) Nomenclature for regular interstrati-fications. American Mineralogist, 67, 394398.Google Scholar
Barron, P.F., Slade, P. & Frost, R.L. (1985a) Solid-state silicon-29 spin-lattice relaxation in several 2:1 phyllo-silicate minerals. Journal of Physical Chemistry, 89, 33053310.10.1021/j100261a029Google Scholar
Barron, P.F., Slade, P. & Frost, R.L. (1985b) Ordering of aluminum in tetrahedral sites in mixed-layer 2:1 phyllosilicates by solid-state high-resolution NMR. Journal of Physical Chemistry, 89, 38803885.10.1021/j100264a023Google Scholar
Bishop, M.E., Dong, H., Kukkadapu, R.K., Liu, C. & Edelmann, R.E. (2011) Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99). Geochimica et Cosmochimica Acta, 75, 52295246.10.1016/j.gca.2011.06.034Google Scholar
Bradley, W.F. (1950) Alternating layer sequence of rectorite. American Mineralogist, 35, 590595.Google Scholar
Brindley, G.W. (1956) Allevardite, a swelling double-layer mica mineral. American Mineralogist, 41, 91103.Google Scholar
Brown, G. & Weir, A.H. (1963) The identity of rectorite and allevardite. Pp. 27-35 in: Proceedings of the International Clay Conference Stockholm 1 (I.T. Rosenqvist & P. Graff-Petersen, editors). Pergamon, Oxford, U.K. Google Scholar
Calliere, S. & Hénin, S. (1950) Sur un nouveau silicate phylliteux: la allevardite. Comptes Rendus de ‘Académie des Sciences, 230, 668669.Google Scholar
Comodi, P. & Zanazzi, P.F. (1997) Pressure dependence of structural parameters of paragonite. Physics and Chemistry of Minerals, 24, 274280.10.1007/s002690050039CrossRefGoogle Scholar
Comodi, P. & Zanazzi, P.F. (2000) Structural thermal behavior of paragonite and its dehydroxylate: a high-temperature single-crystal study. Physics and Chemistry of Minerals, 27, 377385.10.1007/s002690000085CrossRefGoogle Scholar
Drits, V.A., Besson, G. & Muller, F. (1995) An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays & Clay Minerals, 43, 718731.10.1346/CCMN.1995.0430608Google Scholar
Drits, V.A., Lindgreen, H., Salyn, A.L., Ylagan, R. & McCarty, D.K. (1998) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. American Mineralogist, 83, 11881198.10.2138/am-1998-11-1207Google Scholar
Drits, V.A. & Zviagina, B.B. (2009) Trans-vacant and cis-vacant 2:1 layer silicates: Structural features, identification and occurrence. Clays & Clay Minerals, 57, 40515.10.1346/CCMN.2009.0570401Google Scholar
Emmerich, K., Wolters, F., Kahr, G. & Lagaly, G. (2009) Clay profiling: The classification of montmorillonites. Clays & Clay Minerals, 57, 104114.10.1346/CCMN.2009.0570110Google Scholar
Emmerich, K., Koeniger, F., Kaden, H. & Thissen, P. (2015) Microscopic structure and properties of discrete water layer in Na-exchanged montmorillonite. Journal of Colloid and Interface Science, 448, 2431.10.1016/j.jcis.2015.01.087Google Scholar
Gradusov, B.P., Chizhikova, N.P. & Travnikova, L.S. (1968) The nature of interlayer spaces in rectorite from Dagestan. Doklady Akademii Nauk SSSR, Earth Science Section, 180, 130132.Google Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T. & Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Minerals, 41, 863877.10.1180/0009855064140225Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. & Watanabe, T. (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays & Clay Minerals, 35, 111120.10.1346/CCMN.1987.0350203Google Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. American Mineralogist, 73, 13251334.Google Scholar
Jakobsen, H.J., Nielsen, N.C. & Lindgreen, H. (1995) Sequences of charged sheets in rectorite. American Mineralogist, 80, 247252.10.2138/am-1995-3-406Google Scholar
Kaufhold, S., Dohrmann, R., Stucki, J.W. & Anastácio, A.S. (2011) Layer charge density of smectite - closing the gap between the structural formula method and the alkylam-monium method. Clays & Clay Minerals, 59, 200211.10.1346/CCMN.2011.0590208Google Scholar
Kitagawa, R. (1997) Surface microtopography of rectorite (allevardite) from Allevard, France. Clay Minerals, 32, 8995.10.1180/claymin.1997.032.1.10Google Scholar
Klimentidis, R.E. & Mackinnon, I.D.R. (1986) High resolution imaging of ordered mixed-layer clays. Clays & Clay Minerals, 34, 155164.10.1346/CCMN.1986.0340206Google Scholar
Kodama, H. (1966) The nature of the component layers of rectorite. American Mineralogist, 51, 10351055.Google Scholar
Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Revue de L'Institut Francais du Pétrole, 19, 10931112.Google Scholar
Kübler, B. (1967) La cristallinité de l'illite et les zones tout a fait supérieures du métamorphisme. Étages Tectoniques (Colloque de Neuchatel), 105-121.Google Scholar
Lagaly, G. & Weiss, A. (1971) Neue Methoden zur Charakterisierung und Identifizierung quellun-gsfähiger Dreischichttonminerale. Zeitschrift für Pflan zenernährung und Bodenkunde, 130, 924.10.1002/jpln.19711300103Google Scholar
Lantenois, S., Muller, F., Beny, J.-M., Mahiaoui, J. & Cham pallier, R. (2008) Hydrothermal synthesis of beidellites: characterization and study of the cis- and trans-vacant character. Clays & Clay Minerals, 55, 398.10.1346/CCMN.2008.0560104Google Scholar
Mackenzie, R.C. (1951) A micromethod for determination of cation-exchange capacity of clay. Journal of Colloid Science, 6, 219222.Google Scholar
Matsuda, T., Kodama, H. & Yang, A.F. (1997) Ca-rectorite from Sano Mine, Nagano Prefecture, Japan. Clays & Clay Minerals, 45, 773780.10.1346/CCMN.1997.0450601Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays & Clay Minerals, 47, 386388.10.1346/CCMN.1999.0470315CrossRefGoogle Scholar
Miser, H.D. & Milton, C. (1964) Quartz, rectorite and cookeite from the Jeffrey Quarry, near North Little Rock, Pulaski County, Arkansas. Arkansas Geological Commission Bulletin, 21, 619.Google Scholar
Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.-A., Gottardi, G., Guggenheim, S., Koval, P.Y., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D. (1998) Nomenclature of micas. The Canadian Mineralogist, 36, 4148.Google Scholar
Schollenberger, C.J. & Dreibelbis, F.R. (1930) Analytical methods in base exchange investigations on soils. Soil Science, 30, 161174.10.1097/00010694-193009000-00001Google Scholar
Smykatz-Kloss, W. (1967) Über die Möglichkeit der halbquantitativen Mineralbestimmung mit der DTA ohne Flächenintegration. Contributions to Mineralalogy and Petrology, 16, 481502.Google Scholar
Srodon, J. (2013) Identification and Quantitative Analysis of Clay Minerals. Pp. 25-49 in: Handbook of Clay Science (F. Bergaya & G. Lagaly, editors), Elsevier, Amsterdam.Google Scholar
Steudel, A. & Emmerich, K. (2013) Strategies for the successful preparation of homoionic smectites. Applied Clay Science, 75-76, 1321.10.1016/j.clay.2013.03.002Google Scholar
Steudel, A., Weidler, P.G., Schuhmann, R. & Emmerich, K. (2009) Cation exchange reactions of vermiculite with Cu-triethylenetetramine as affected by mechanical and chemical treatment. Clays & Clay Minerals, 54, 48693.10.1346/CCMN.2009.0570409Google Scholar
Stevens, R.E. (1946) A system for calculating analyses of micas and related minerals to end members. United States Geological Survey Bulletin, 950, 101119.Google Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177193.10.1180/claymin.1984.019.2.05CrossRefGoogle Scholar
Wang, X., Du, Y., Luo, J., Lin, B. & Kennedy, J.F. (2006) Chitosan/organic rectorite nanocomposite films: Structure, characteristic and drug delivery behavior. Carbohydrate Polymers, 69, 4149.10.1016/j.carbpol.2006.08.025Google Scholar
Wolters, F. & Emmerich, K. (2007) Thermal reactions of smectites — Relation of dehydroxylation temperature to octahedral structure. Thermochimica Acta, 462, 8088.10.1016/j.tca.2007.06.002CrossRefGoogle Scholar
Wolters, F., Lagaly, G., Kahr, G., Nueesch, R. & Emmerich, K. (2009) A comprehensive characterization of dioctahedral smectites. Clays & Clay Minerals, 57, 115133.10.1346/CCMN.2009.0570111CrossRefGoogle Scholar