Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-12T09:38:24.197Z Has data issue: false hasContentIssue false

Layered double hydroxides: matrices for storage and source of boron for plant growth

Published online by Cambridge University Press:  13 March 2018

Gustavo Franco de Castro
Affiliation:
Universidade Federal de Viçosa, Campus de Viçosa, Departamento de Solos, Viçosa, CEP: 36570-900, Brazil
Jader Alves Ferreira
Affiliation:
Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Paranaíba, Rodovia MG-230 km 08, Cx. Postal 22 - Rio Paranaíba - MG, CEP:38810-000, Brazil
Denise Eulálio
Affiliation:
Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Paranaíba, Rodovia MG-230 km 08, Cx. Postal 22 - Rio Paranaíba - MG, CEP:38810-000, Brazil
Silas Junior de Souza
Affiliation:
Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Paranaíba, Rodovia MG-230 km 08, Cx. Postal 22 - Rio Paranaíba - MG, CEP:38810-000, Brazil
Sarah Vieira Novais
Affiliation:
Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciências do Solo, Universidade de São Paulo, Av. Pádua Dias, 11 - Cx. Postal 9 - Piracicaba - SP, CEP: 13418-900 – Brazil
Roberto Ferreira Novais
Affiliation:
Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Paranaíba, Rodovia MG-230 km 08, Cx. Postal 22 - Rio Paranaíba - MG, CEP:38810-000, Brazil
Frederico Garcia Pinto
Affiliation:
Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Paranaíba, Rodovia MG-230 km 08, Cx. Postal 22 - Rio Paranaíba - MG, CEP:38810-000, Brazil
Jairo Tronto*
Affiliation:
Universidade Federal de Viçosa, Instituto de Ciências Exatas e Tecnológicas, Campus de Rio Paranaíba, Rodovia MG-230 km 08, Cx. Postal 22 - Rio Paranaíba - MG, CEP:38810-000, Brazil
*

Abstract

The increase of the absorption efficiency of boron (B) by plants is essential for increasing crop productivity. The intercalation of B in MgAl layered double hydroxides (LDHs) is an alternative to evaluating how these materials can provide B to plants. In this work, a MgAl LDH intercalated with borate ions (Mg2Al-B-LDH) was synthesized by the constant pH coprecipitation method, and the material produced was evaluated as a matrix for storage and as a source of B for plants. The Mg2Al-B-LDH was characterized by XRD, ATR-FTIR, TGA-DTA, specific surface area, pore size and volume, and SEM. A bioassay was performed to verify the supply of B to plants from the two sources in the forms of H3BO3 and of Mg2Al-B-LDH to sunflower plants grown in pots. The LDH basal spacing value of 12.0 Å is characteristic of intercalation of tetraborate octahydrate ions [B4O5(OH)42−]·8H2O between the layers. There was an increase in the dry matter (DM) and B content of the plants relative to those treatments where no B was added. The lack of statistical difference for plant yield between the two sources of B suggests a lack of stability of the Mg2Al-B-LDH structure under the acidic condition of the soil.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented during session MISC-01-‘LDHs: from design and characterization to applications’ at the International Clay Conference 2017.

Guest Associate Editor: Vanessa Prevot

References

REFERENCES

Alvarez, V.V.H., Novais, R.F., Barros, N.F., Cantarutti, R.B. & Lopes, A.S. (1999) Interpretação dos resultados das análises de solos. Pp. 2532 in: Recomendação para o uso de corretivos e fertilizantes em Minas Gerais (Ribeiro, A.C., Guimaraes, P.T.G. & Alvarez, V. V.H., editors). 5 Aproximação, Brazil: CFSEMG.Google Scholar
Alvarez, V.V.H., Novais., R.F., Dias., L.E. & Oliveira., J.A. (2000) Determinação e uso do fósforo remanescente. Viçosa. Boletim Informativo. Sociedade Brasileira de Ciência do Solo, 25, 2733.Google Scholar
Ashekuzzaman, S.M. & Jiang, J.Q. (2017) Strategic phosphate removal/recovery by a re-usable Mg–Fe–Cl layered double hydroxide. Process Safety and Environmental Protection, 107, 454462.Google Scholar
Ay, A.N., Zümreoglu-Karan, B., Temel, A. & Mafra, L. (2011) Layered double hydroxides with interlayer borate anions: A critical evaluation of synthesis methodology and pH-independent orientations in nano-galleries. Applied Clay Science, 51, 308316.Google Scholar
Bernardi, A.C., Monte, M.B.D.M., Paiva, P.R.P., Werneck, C.G., Haim, P.G. & Barros, F.D.S. (2010). Dry matter production and nutrient accumulation after successive crops of lettuce, tomato, rice, and andropogongrass in a substrate with zeolite. Revista Brasileira de Ciência do Solo, 34, 435442.CrossRefGoogle Scholar
Benício, L.P.F., Silva, R.A., Lopes, J.A., Eulálio, D., Dos Santos, M.M., Aquino, L.A., Vergutz, L., Novais, R.F., Costa, L.M., Pinto, F.G & Tronto, J. (2015) Layered double hydroxides: nanomaterials for applications in agriculture. Revista Brasileira de Ciência do Solo, 39, 113.Google Scholar
Benício, L.P.F., Constantino, V.R.L, Pinto, F.G., Vergutz, L., Tronto, J. & Costa, L.M. (2016) Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chemistry & Engineering, 5, 399409.Google Scholar
Berber, M.R., Hafez, I.H. & Minagawa, K. (2014) A sustained controlled release formulation of soil nitrogen based on nitrate-layered double hydroxide nanoparticle material. Journal of Soils and Sediments, 14, 6066.Google Scholar
Caires, E.F., Garbuio, F.J., Churka, S. & Joris, H.A. (2011) Use of gypsum for crop grain production under a subtropical no-till cropping system. Agronomy Journal, 103(6), 18041814.Google Scholar
Cardoso, L.P., Celis, R., Cornejo, J. & Valim, J.B. (2006) Layered double hydroxides as supports for the slow release of acid herbicides, Journal of Agricultural and Food Chemistry, 54, 59685975.Google Scholar
Cavani, F., Trifirò, F. & Vaccari, A. (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173301.Google Scholar
Caputo, J., Beier, C.M., Sullivan, T.J. & Lawrence, G.B. (2016) Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA). Science of the Total Environment, 565, 401411.Google Scholar
Corrêa, R.M., Nascimento, C.W.A.D., Souza, S.K.D.S., Freire, F.J. & Silva, G.B.D. (2005) Gafsa rock phosphate and triple superphosphate for dry matter production and P uptake by corn. Scientia Agricola, 62, 159164.CrossRefGoogle Scholar
Da Silva, V., Kamogawa, M.Y., Marangoni, R., Mangrich, A.S. & Wypych, F. (2014) Layered double hydroxides as matrices for nitrate slow release fertilizers, Revista Brasileira Ciência do Solo, 38, 272277.Google Scholar
De Roy, A., Forano, C., El Malki, K. & Besse, J.P. (1992) Anionic clays: trends in pillaring chemistry. Pp 108169 in: Expanded Clays and Other Microporous Solids (Occelli, M. & Robson, H., editors). Springer Science, New York.Google Scholar
Douy, A. (2005) Aluminium borates: synthesis via a precipitation process and study of their formation by DSC analysis. Solid State Sciences, 7, 117122.Google Scholar
Embrapa (2000) Métodos de análise de tecidos vegetais utilizados na Embrapa Solos. Rio de Janeiro. Circular Técnica 6. Embrapa Solos.Google Scholar
Evans, D.G. & Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp 187 in: Layered Double Hydroxides (Duan, X. & Evans, D.G., editors). Springer: New York.Google Scholar
Everaert, M., Warrinnier, R., Baken, S., Gustafsson, J.P., De Vos, D. & Smolders, E. (2016) Phosphate-exchanged Mg-Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustainable Chemistry & Engineering, 5, 399409.Google Scholar
Everaert, M., Degryse, F., McLaughlin, M.J., De Vos, D. & Smolders, E. (2017) Agronomic effectiveness of granulated and powdered P-exchanged Mg–Al LDH relative to struvite and MAP. Journal of Agricultural and Food Chemistry, 65, 67366744.CrossRefGoogle ScholarPubMed
Ferreira, O.P., De Moraes, S.G., Duran, N., Cornejo, L. & Alves, O. L. (2006) Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere, 62, 8088.Google Scholar
Forano, C., Hibino, T., Leroux, F. & Taviot-GuéHo, C. (2006) Layered Double Hydroxides. Pp 10191128 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Amsterdam: Elsevier.Google Scholar
Ghormade, V., Deshpande, M.V. & Pakmikar, K.M. (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29, 792803.Google Scholar
Guan, Z., Lv, J., Bai, P. & Guo, X. (2016) Boron removal from aqueous solutions by adsorption – A review. Desalination, 383, 2937.Google Scholar
Halajnia, A., Oustan, S., Najafi, N., Khataee, A. R. & Lakzian, A. (2016) Effects of Mg-Al layered double hydroxide on nitrate leaching and nitrogen uptake by maize in a calcareous soil. Communications in Soil Science and Plant Analysis, 47, 11621175.Google Scholar
Imran, A., López-Rayo, S., Magid, J. & Hansen, H.C.B. (2016) Dissolution kinetics of pyroaurite-type layered double hydroxide doped with Zn: Perspectives for pH controlled micronutrient release. Applied Clay Science, 123, 5663.Google Scholar
Isaacs-Paez, E.D., Leyva-Ramos, R., Jacobo-Azuara, A., Martinez-Rosales, J.M. & Flores-Cano, J.V. (2014) Adsorption of boron on calcined Al Mg layered double hydroxide from aqueous solutions. Mechanism and effect of operating conditions. Chemical Engineering Journal. 245, 248257.Google Scholar
Jun, L., Peng-Sheng, S. & Bai, S. (1994) Synthesis and properties of dimagnesium hexaborate heptadecahydrate. Thermochimica Acta, 233, 211218.Google Scholar
Kentjono, L., Liu, J.C., Chang, W.C. & Irawan, C. (2010) Removal of boron and iodine from optoelectronic wastewater using Mg–Al (NO3) layered double hydroxide. Desalination, 262, 280283.CrossRefGoogle Scholar
López, F.J., Giménez, E. & Hernández, F. (1993) Analytical study on the determination of boron in environmental water samples. Fresenius Journal of Analytical Chemistry, 346, 984987.Google Scholar
Marcato, S.R.C., Reissmann, C.B., Marques, R., Oliveira, E.D. & Taffarel, A.D. (2005) Effect of polymers associated with N and K fertilizer sources on Dendrathema grandiflorum growth and K, Ca and Mg relations. Brazilian Archives of Biology and Technology, 48, 335342.CrossRefGoogle Scholar
Marschner, P. (2012) Marschner's Mineral Nutrition of Higher Plants (3rd edition). 651 pp. Academic Press, New York.Google Scholar
Moraes, P.I.R., Tavares, S.R., Vaiss, V.S. & Leitão, A.A. (2016) Ab initio study of layered double hydroxides containing iron and its potential use as fertilizer. The Journal of Physical Chemistry C, 120, 99659974.Google Scholar
Novais, R.F., Neves, J.C.L. & Barros, N.F. (1991) Ensaio em ambiente controlado. Pp 189254 in: Métodos de pesquisa em fertilidade do solo (Oliveira, A.J., Garrido, W.E., Araújo, J.D. & Lourenço, S., editors). EMBRA-SEA.Google Scholar
Raij, B. van, Andrade, J.C., Cantarella, H. & Quaggi, J.A. (2001) Análise química para avaliação da fertilidade de solos tropicais. 285 pp. Campinas, Instituto Agronômico de Campinas, Brazil.Google Scholar
Rosolem, C.A. & Bíscaro, T. (2007) Adsorção e lixiviação de boro em Latossolo Vermelho-Amarelo. Pesquisa Agropecuária, 42, 14731478.Google Scholar
Tronto, J., Cardoso, L.P. & Valim, J.B. (2003) Studies of the intercalation and “in vitro” liberation of amino acids in magnesium aluminium layered double hydroxides, Molecular Crystals and Liquid Crystal, 390, 7989.CrossRefGoogle Scholar
Tronto, J., Dos Reis, M.J., Silverio, F., Balbo, V.R., Marchetti, J.M. & Valim, J.B. (2004) In vitro release of citrate anions intercalated in magnesium aluminium layered double hydroxides. Journal of Physics and Chemistry of Solids, 65, 475480.Google Scholar
USDA – Soil Survey Staff (1999) Soil Taxonomy – A Basic System of Soil Classification for Making and Interpreting Soil Survey (2nd edition). 871 pp. USDA, Washington, D.C.Google Scholar
Woo, M.A., Kim, T.W., Paek, M.J., Ha, H.W., Choy, J.H. & Hwang, S.J. (2011) Phosphate-intercalated C-Fe-layered double hydroxides: Crystal structure. bonding character. and release kinetics of phosphate. Journal of Solid State Chemistry, 184, 171176.CrossRefGoogle Scholar
Yu, S., Wang, X., Chen, Z., Wang, J., Wang, S., Hayat, T. & Wang, X. (2017) Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. Journal of Hazardous Materials, 321, 111120.Google Scholar
Zhang, Y., He, X., Liang, H., Zhao, J., Zhang, Y., Xu, C. & Shi, X. (2016) Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 23, 54425450.Google Scholar
Zhihong, L., Mancheng, H. & Shiyang, G. (2004) Studies on synthesis, characterization and thermochemistry of Mg2[B2O4(OH)2] H2O. Journal of Thermal Analysis and Calorimetry, 75, 7378.CrossRefGoogle Scholar
Zinn, Y.L., Lal, R. & Resck, D.V. (2005) Changes in soil organic carbon stocks under agriculture in Brazil. Soil and Tillage Research, 84, 2840.CrossRefGoogle Scholar