Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-06T03:32:30.965Z Has data issue: false hasContentIssue false

Surface structure of organoclays as examined by X-ray photoelectron spectroscopy and molecular dynamics simulations

Published online by Cambridge University Press:  02 January 2018

B. Schampera*
Affiliation:
Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
R. Solc
Affiliation:
Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter Jordan-Straße 82, A–1190, Austria
S.K. Woche
Affiliation:
Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
R. Mikutta
Affiliation:
Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
S. Dultz
Affiliation:
Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
G. Guggenberger
Affiliation:
Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
D. Tunega
Affiliation:
Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter Jordan-Straße 82, A–1190, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Organoclays are sorbent materials prepared from clays by exchanging inorganic with organic cations. Their properties depend on the loading and conformational structure of the organic cations, but little information is available about the surface structures of organoclays. In this work, X-ray photoelectron spectroscopy (XPS) and classical molecular dynamics (MD) simulations are combined to characterize the external interface of an organoclay prepared from hexadecylpyridinium (HDPy+) and bentonite. The XPS survey spectra show well the varying elemental composition of the surface with increasing amount of surfactant, showing a decreasing contribution of clay-derived elements with increasing organic coverage. The high-resolution C 1s XPS spectra depict sensitively the surface arrangement of the surfactant. In combination with MD simulations, the results implied a monolayer coating for low surfactant coverage and a disordered bilayer arrangement at high surfactant uptakes. Molecular dynamics simulations showed that for very high cation uptake a quasi-paraffin-like configuration is also possible. The combination of experimental and modelling methods yielded congruent information on the molecular-scale arrangement of organic cations at the organoclay surfaces and the controlling mechanisms.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Bachmann, J., Goebel, M.-O. & Woche, S.K. (2013) Small-scale contact angle mapping on undisturbed soil surfaces. Journal of Hydrology and Hydromechanics, 61, 38.10.2478/johh-2013-0002CrossRefGoogle Scholar
Bilgic, C., Yazici, D.T., Karakehya, N., Cetinkaya, H., Singh, A. & Chehimi, M.M. (2014) Surface and interface physicochemical aspects of intercalated organo-ben-tonite. International Journal of Adhesion Adhesives, 50, 204210.10.1016/j.ijadhadh.2014.01.033CrossRefGoogle Scholar
Böckenhoff, K. & Fischer, W.R. (2001) Determination of electrokinetic charge with a particle-charge detector, and its relationship to the total charge. Fresenius Journal of Analytical Chemistry, 371, 670674.10.1007/s002160100897CrossRefGoogle Scholar
Cygan, R.T., Liang, J.J. & Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 12551266.10.1021/jp0363287CrossRefGoogle Scholar
Dultz, S. & Bors, J. (2000) Organophilic bentonites as adsorbents for radionuclides. II. Chemical and mineralogical properties of HDPy-montmorillonite. Applied Clay Science, 16, 1529.10.1016/S0169-1317(99)00042-3CrossRefGoogle Scholar
Dultz, S., Riebe, B. & Bunnenberg, C. (2005) Temperature effects on iodine adsorption on organo-clay minerals. II. Structural effects. Applied Clay Science, 28, 1730.10.1016/j.clay.2004.01.005CrossRefGoogle Scholar
Fu, Y.-T. & Heinz, H. (2010) Cleavage energy of alkylammonium-modified montmorillonite and relation to exfoliation in nanocomposites: Influence of cation density, head group structure, and chain length. Chemistry of Materials, 22, 15951605.10.1021/cm902784rCrossRefGoogle Scholar
He, H., Ding, Z., Zhu, J., Yan, P., Xi, Y., Yang, D. & Frost, R.L. (2005) Thermal characteristics of surfactant modified montmorillonites. Clays and Clay Minerals, 53, 287293.10.1346/CCMN.2005.0530308CrossRefGoogle Scholar
He, H., Zhou, Q., Martens, W.N., Kloprogge, T.J., Yuan, P., Xi, Y., Zhu, J. & Frost, R.L. (2006) Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689696.10.1346/CCMN.2006.0540604CrossRefGoogle Scholar
He, H., Zhou, Q., Frost, R.L., Wood, B.J., Duong, L.V. & Kloprogge, T. (2007) A X-ray photoelectron spectro-scopy study of HDTMAB distribution within organoclays. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66, 11801188.10.1016/j.saa.2006.06.005CrossRefGoogle Scholar
He, H., Ma, Y., Zhu, J., Yuan, P. & Qing, Y. (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 6772.10.1016/j.clay.2009.11.024CrossRefGoogle Scholar
He, H., Ma, Y., Zhu, J., Frost, R.L., Theng, B.K.G. & Bergaya, F. (2014) Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, 2228.10.1016/j.clay.2014.02.008CrossRefGoogle Scholar
Heinz, H., Vaia, R.A., Krishnamoorti, R. & Farmer, B.L. (2007) Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, head group structure, and cation exchange capacity. Chemistry of Materials, 19, 5968.10.1021/cm062019sCrossRefGoogle Scholar
Heinz, H., Vaia, R.A. & Farmer, B.L. (2008) Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces. Langmuir, 24, 37273733.10.1021/la703019eCrossRefGoogle ScholarPubMed
Hockney, R.W. & Eastwood, J.W. (1988) Computer Simulation Using Particles. Taylor & Francis Group, New York, pp. 1822, 267-301.10.1887/0852743920CrossRefGoogle Scholar
Hoover, W.G. (1985) Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31, 16951697.10.1103/PhysRevA.31.1695CrossRefGoogle ScholarPubMed
Jagst, E. (2010) Surface Functional Group Characterization Using Chemical Derivatization X-ray Photoelectron Spectroscopy (CD-XPS). PhD thesis, Freie Universität Berlin, Germany.Google Scholar
Jorgensen, W.L., Maxwell, D.S. & Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 1122511236.10.1021/ja9621760CrossRefGoogle Scholar
Klebow, B. & Meleshyn, A. (2012) Monte Carlo study of the adsorption and aggregation of alkyltrimethyl-ammonium chloride on the montmorillonite-water interface. Langmuir, 28, 1327413283.10.1021/la302658cCrossRefGoogle Scholar
Koh, S.M., Song, M.S. & Takagi, T. (2005) Mineralogy, chemical characteristics and stabilities of cetylpyridi-nium-exchanged smectite. Clay Minerals, 40, 213222.10.1180/0009855054020167CrossRefGoogle Scholar
Lee, S.Y. & Kim, S.J. (2002) Expansion characteristics of organoclay as a precursor to nanocomposites. Colloids and Surfaces A: Physicochemical Engineering Aspects, 211, 1926.10.1016/S0927-7757(02)00215-7CrossRefGoogle Scholar
Lee, S.Y., Cho, W.J., Hahn, P.S., Lee, M., Lee, Y.B. & Kim, K.J. (2005) Microstructural changes of reference mont-morillonites by cationic surfactants. Applied Clay Science, 30, 174180.10.1016/j.clay.2005.03.009CrossRefGoogle Scholar
Li, J., Zhu, L. & Cai, W. (2006) Characteristics of organobentonite prepared by microwave as a sorbent to organic contaminants in water. Colloids and Surfaces A, 281, 177183.10.1016/j.colsurfa.2006.02.055CrossRefGoogle Scholar
Meleshyn, A. & Bunnenberg, C. (2006) Interlayer expansion and mechanisms of anion sorption of Na-montmorillonite modified by cetylpyridinium chloride: A Monte Carlo study. Journal of Physical Chemistry B, 110, 22712277.10.1021/jp056178vCrossRefGoogle ScholarPubMed
Mravcakova, M., Boukerma, K., Omastova, M. & Chehimi, M.M. (2006) Montmorillonite/polypyrrole nanocomposites. The effect of organic modification of clay on chemical and electrical properties. Material Science and Engineering C, 26, 306313.10.1016/j.msec.2005.10.044CrossRefGoogle Scholar
Naranjo, P.B., Sham, E.L., Rodriguez Castellon, E., Torres Shanchez, R.M. & Farfan Torres, E.M. (2013) Identification and quantification of the interaction mechanisms between surfactant HDTMA-Br and montmorillonite. Clays and Clay Minerals, 61, 98106.10.1346/CCMN.2013.0610208CrossRefGoogle Scholar
Park, Y., Ayoko, G.A. & Frost, R.L. (2011) Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. Journal of Colloid and Interface Science, 354, 292305.10.1016/j.jcis.2010.09.068CrossRefGoogle ScholarPubMed
Park, Y., Ayoko, G.A., Horvath, E., Kurdi, R., Kristof, J. & Frost, R.L. (2013) Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, 319334.10.1016/j.jcis.2012.10.067CrossRefGoogle ScholarPubMed
Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 119.10.1006/jcph.1995.1039CrossRefGoogle Scholar
Rytwo, G., Gonen, Y., Afuta, S. & Dultz, S. (2005) Interactions of pendimethalin with organo-montmor-illonite complexes. Applied Clay Science, 28, 6777.10.1016/j.clay.2004.01.016CrossRefGoogle Scholar
Rytwo, G., Nir, S. & Shuali, U. (2012) Clay and water treatment. Applied Clay Science, 67-68, 117118.10.1016/j.clay.2012.09.021CrossRefGoogle Scholar
Schampera, B. & Dultz, S. (2009) Determination of diffusive transport in HDPy-montmorillonite by H2O-D2O exchange using in situ ATR-FTIR spectroscopy. Clay Minerals, 44, 249266.10.1180/claymin.2009.044.2.249CrossRefGoogle Scholar
Schampera, B. & Dultz, S. (2011) The effect of surface charge and wettability on H2O self diffusion in compacted clays. Clays and Clay Minerals, 59, 4257.10.1346/CCMN.2011.0590107CrossRefGoogle Scholar
Shackelford, C.D. & Moore, S.M. (2013) Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Engineering Geology, 152, 133147.10.1016/j.enggeo.2012.10.014CrossRefGoogle Scholar
Sun, H., Zhang, J., Li, L., Xu, J. & Sun, D. (2013) Surface modification of natural Na-montmorillonite in alkane solvents using a quaternary ammonium surfactant. Colloids and Surfaces A: Physicochemical Engineering Aspects, 426, 2632.10.1016/j.colsurfa.2013.03.008CrossRefGoogle Scholar
Tanuma, S. (2003) Electron attenuation lengths. pp. 259-294 in: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (D. Briggs & J.T. Grant, editors). IM Publications, Chichester, UK and Surface Spectra Limited, Manchester UK.Google Scholar
Toma, L.M., Gengler, R.Y.N., Prinsen, E.B., Gournis, D. & Rudolf, P. (2010) A Langmuir-Schaefer approach for the synthesis of highly ordered organoclay thin films. Physical Chemistry Chemical Physics, 12, 1218812197.10.1039/c0cp00286kCrossRefGoogle ScholarPubMed
Van Reeuwijk, L.P. (2003) Procedures for Soil Analysis (6th edition). ISRIC Technical paper 9. Wageningen, The Netherlands.Google Scholar
Yariv, S. (2002) Introduction to organo-clay complexes and interactions. Pp. 39-122 in: Organo-Clay Complexes and Interactions (S. Yariv & H. Cross, editors). Marcel Dekker, New York, USA.Google Scholar
Zeng, Q.H., Yu, A.B., & Lu, G.Q. (2004) Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethylammonium in organoclays. Journal of Physical Chemistry B, 108, 1002510033.10.1021/jp037245tCrossRefGoogle Scholar
Zhao, Q. & Burns, S.E. (2012) Molecular dynamics simulation of secondary sorption behavior of mont-morillonite modified by single chain quaternary ammonium cations. Environmental Science & Technology, 46, 39994007.10.1021/es202115vCrossRefGoogle Scholar
Zhao, Q. & Burns, S.E. (2013) Modelling sorption and diffusion of organic sorbate in hexadecyltrimethylam-monium-modified clay nanopores - a molecular dynamics simulation study. Environmental Science & Technology, 47, 27692776.10.1021/es3045482CrossRefGoogle ScholarPubMed