Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-13T09:54:18.891Z Has data issue: false hasContentIssue false

Acidity Of Montmorillonite-(Ce or Zr) Phosphate Cross-Linked Compounds

Published online by Cambridge University Press:  28 February 2024

F. Del Rey-Bueno
Affiliation:
Departemento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva s.n., 18071 Granada, Spain
A. García-Rodríguez
Affiliation:
Departemento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva s.n., 18071 Granada, Spain
A. Mata-Arjona
Affiliation:
Departemento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva s.n., 18071 Granada, Spain
F. J. Del Rey-Pérez-Caballero
Affiliation:
Departemento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva s.n., 18071 Granada, Spain

Abstract

The nature and number of acid sites per unit weight on a series of materials obtained by interaction of a montmorillonite with zirconium or cerium hydrogenphosphates precipitated in situ by reaction between their precursors have been investigated.

The quantitative determination of the surface acidity has been carried out by three different methods: titration with triethanolamine in aqueous media; TG analysis of the samples after n-butylamine treatment and vacuum desorption; and chemisorption of NH3 at 239.8 K. Additional information about the nature of the surface acid sites has been obtained from the IR spectra of the samples with bases adsorbed.

Results show that the acid site density on the montmorillonite-cerium or zirconium phosphate cross-linked compounds is greater than on the parent montmorillonite and increases as the content in tetravalent metal phosphate rises throughout the different series. Also the number of acid sites for the cerium phosphate-montmorillonite materials is lower than for zirconium ones and the characteristics obtained depend on the bases used for their evaluation.

The presence of two IR adsorption bands at 1400 and 3145 cm−1, assigned to the NH4+ ion, and the absence of the 1170–1361 cm−1 bands, characteristic of the NH3 adsorbed on a Lewis site, strongly suggest the Brönsted character of the acidity of these compounds.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G., Costantino, U., Gregorio, Di F., Galli, P., and Torracca, E. 1968. Crystalline insoluble salts of polybasic metals. III. Preparation and ion exchange properties of cerium (IV) phosphate of various crystallinites. J. Inorg. Nucl. Chem. 30: 295304.CrossRefGoogle Scholar
Alberti, G., and Costantino, U. 1982. Intercalation Chemistry of Acid Salts of Tetravalent Metals with Layered Structure and Related Materials. In Intercalation Chemistry Whittingham, M. S., and Jacobson, A. J., eds. New York: Academic Press, 157.Google Scholar
Benesi, H. A., 1957. Acidity of catalyst surfaces (1) acid strength from colors of adsorbed indicators. J. Phys. Chem. 61: 970.CrossRefGoogle Scholar
Christensen, J. J., Hansen, L. D., and Izat, R. M. 1976. Handbook of proton ionization heat. New York: John Wiley and Sons, 16 pp.Google Scholar
Clearfield, A., and Stynes, J. A. 1964. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J. Inorg. Nucl. Chem. 26: 117129.Google Scholar
Clearfield, A., and Hunter, R. A. 1976. On the mechanism of ion exchange in zirconium phosphates. XIV. The effect of crystallinity on NH4 /H+ exchange of α-zirconium phosphate. J. Inorg. Nucl. Chem. 38: 1085.Google Scholar
Davidov, A. A., 1990. Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides. New York: John Wiley and Sons, 2737.Google Scholar
Fomi, F., 1973. Comparison of the methods for the determination of surface acidity of solids catalysts. Surface acidity of solid catalysts. New York: Marcel Decker, 72 pp.Google Scholar
García-Rodríguez, A., del Rey-Bueno, F., del Rey-Pérez-Caballero, F. J., Ureña-Amate, M. D., and Mata-Arjona, A. 1995. Synthesis and characterization of montmorillonite-(Ce or Zr) phosphate crosslinked compounds. Mat. Chem. and Phys. 39(4): 269277.CrossRefGoogle Scholar
Hattori, T., Ishiguro, A., and Murakami, Y. 1978. Acidity of crystalline zirconium phosphate. J. Inorg. Nucl. Chem. 40: 11071111.Google Scholar
Liansheng, L. i., Xinsheng, Liu, Ying, G. e., Liyun, L. i., and Klinowski, J. 1991. Intercalation and Pillaring of Zirconium Bis (monohydrogenphosphate) with NH2(CH3)3Si(OC2H5)3. J. Phys. Chem. 95: 59105914.Google Scholar
Little, L. H., 1966. Infrared Spectra of Adsorbed Species. New York: Academic Press. 344350.Google Scholar
McClellan, A. L., and Harnsberger, H. F. 1967. Cross-sectional Areas of Molecules Adsorbed on Solid Surfaces. J. Coll. and Interf Sci. 23: 577599.Google Scholar
Mapes, J. E., and Eischens, R. P. 1954. The infrared spectra of ammonia chemisorbed on cracking catalysts. J. Phys. Chem. Ithaca 58: 10591062.Google Scholar
Morimoto, T., Imai, J., and Nagao, M., 1974. Infrared spectra of n-butylamine adsorbed on silica-alumina. J. Physical Chem. 78 (7): 704708.Google Scholar
Mortland, M., Fripiat, J. J., Chavssidon, J., and Uytterhoeven, J. B. 1963. Interaction between ammonia and the expanding latices of montmorillonite and vermiculite. J. Physical Chem. 67: 248258.Google Scholar
Nakamoto, K., 1978. I.R. and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley.Google Scholar
Peri, J. B., 1971. Surface Chemistry of AIPO4. A Mixed Oxide of A1 and P. Discuss. Faraday Soc. 52: 55.Google Scholar
Pimentel, G. C., Bulanin, M. U., and Thiel, M. Van. 1962. Infrared spectra of NH3 suspended in solid N. J. Chem. Phys. 36: 500.Google Scholar
Primo-Yufera, E., and Carrasco-Dorrien, J. M. 1981. Química Agrícola I. Suelos y Fertilizantes (Spanish). Madrid: Alhambra, 276279.Google Scholar
Rey-Bueno, F. del., Villafranca-Sánchez, E., Mata-Arjona, A., González-Pradas, E., and García-Rodríguez, A. 1989. Syntheses and surface properties determination of the ammonium, methylamine and ethylamine phases of cerium (IV) and thorium (IV) phosphates. Mat. Chem. and Phys. 24: 99109.Google Scholar
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscoum, L., Pierotti, R. A., Rouquerol, J., and Simienwska, T. 1985. Reporting physisorption data for Gas/Soüd systems. Pure and Appl. Chem. 57(4): 603619.CrossRefGoogle Scholar
Tamele, M. W., 1950. Chemistry of the surface and the activity of silica-alumina cracking catalysts. Disc. Faraday Soc. 8: 270279.Google Scholar
Tsyganenko, A. A., Pozdnyakov, D. V., and Filimonov, V. N. 1975. Infrared study of surface species arising from ammonia adsorption on oxide surfaces. J. Molecular Structure 29: 299318.Google Scholar
Van Cauwelaert, F. H., Vermoortele, F., and Uytterhoeven, J. B. 1971. Infra-red Spectroscopic Study of the Adsorption of Amines on the A-Type and B-Type Hydroxyls of an Acrosil Silica Gel. Discuss. Faraday Soc. 52: 66.Google Scholar
Waddington, T. C., 1958. Preparation of tetramethilam-monium hydrogen dichloride and the structure of the hydrogen dichloride ion, HCl–2. J. Chem. Soc. 17081709.Google Scholar
Weast, R. C., 1978. Handbook of Chemistry and Physics. Boca Ratón: C.R.C. Press D-203.Google Scholar
Wright, A. C., Granquist, W. T., and Kennedy, J. V. 1972. Catalysis by layer lattice silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay. J. Catal. 25: 6583.Google Scholar