Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-13T08:14:12.789Z Has data issue: false hasContentIssue false

Ceramics Properties of Indurated-Shale Quarry Wastes from Abakaliki, Southeastern Nigeria: Application as Raw Materials in Roofing-Tile Production

Published online by Cambridge University Press:  01 January 2024

Obisi M. Nweke*
Affiliation:
Department of Geology and Exploration Geophysics, Ebonyi State University, Abakaliki, Nigeria
Adolphus I. Omeokachie
Affiliation:
Department of Geological Sciences, Nnamdi Azikwe University, Awka, Nigeria

Abstract

The present study describes research carried out to evaluate the mineralogical, geochemical and technological properties of indurated shale-quarry wastes and assess the suitability of these low-cost and locally available quarry wastes generated from crushed indurated shales for possible use as alternatives to fresh raw materials in the manufacture of roofing-tile products. Firstly, the mineralogical and chemical properties of the indurated shales were investigated by X-ray diffraction (XRD) and X-ray fluorescence, while their physical properties were identified by grain-size distribution, Atterberg limits, and clay activity. Samples of indurated shale-quarry wastes (ISQWs) were subjected to heat treatment at elevated firing temperatures to provide the required strength and durability and their ceramics properties (linear shrinkage, weight loss, water absorption, bulk density, and flexural strength) were determined. From the results, the ISQWs were composed predominantly of fine particles with medium plasticity and clay activity with values generally >0.75. The mineralogy revealed a predominance of aluminosilicates (illite-kaolinite-smectite-chlorite) with large quartz contents and variable percentages of carbonate and feldspar. The oxides were dominated by SiO2 and Al2O3, small amounts of ferromagnesian minerals, and considerable amounts of alkalis (K2O and Na2O) which act as fluxes. The CaO concentrations were variable and related to carbonate contents. Characterizations based on compositional ternary (total clay mineral-carbonate-quartz + feldspar) systems, Casagrande clay workability charts, and Winkler and McNally diagrams revealed their suitability for ceramics applications as the majority of ISQW samples fell within the specifications for roofing tiles. The ISQWs fired at a high temperature of 1000°C revealed considerable weight loss, reduction in both linear shrinkage and water absorption with insignificant increase in flexural strength. In order to achieve excellent ceramics properties and further reduce sintering temperature for their suitability as raw materials in the production of roofing tiles, beneficiations of ISQWs are highly recommended.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agumanu, A. E. The Abakaliki and Ebonyi formations: Subdivisions of the Albian Asu River Group in the southern Benue Trough, Nigeria Journal African Earth Sciences 1989 9 195207 10.1016/0899-5362(89)90021-3CrossRefGoogle Scholar
Akande, S. O., Muche, A. Mineralogical, textural and paragenetic studies of the lead-zinc-copper mineralization in the Lower Benue Trough (Nigeria) and their genetic implications Journal African Earth Sciences 1989 9 445456 10.1016/0899-5362(89)90004-3CrossRefGoogle Scholar
Akintola, G. O., Amponsah-Dacosta, F., Mhlongo, S. E. Geotechnical evaluation of clayey materials for quality burnt bricks Heliyon 2020 6 110 10.1016/j.heliyon.2020.e05626CrossRefGoogle ScholarPubMed
Akpokodje, E. G., Ololunfemi, B. N., Etu-Efeotor, J. O. The composition and physical properties of some ceramics and pottery clays of southeastern Nigeria Journal of Mining and Geology 1991 27 17Google Scholar
ASTM C1167- 11 (2017). Standard Specification for Clay Roof Tiles.Google Scholar
ASTM C326 (2009). Standard test method for drying and firing shrinkages of ceramic white ware clays. ASTM International, West Conshohocken, Pennsylvania, USA.Google Scholar
ASTM C373 (2014). Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products, ceramic tiles, and glass tiles. ASTM International, West Conshohocken, Pennsylvania, USA.Google Scholar
ASTM D422 (1972). Standard Test Method for Particle-Size Analysis of Soils.Google Scholar
ASTM D4318 (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, Pennsylvania, USA.Google Scholar
Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T. Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia Journal of Materials Processing Technology 2009 209 28122817 10.1016/j.jmatprotec.2008.06.055CrossRefGoogle Scholar
Bain, J. A. A plasticity chart as an aid to the identification and assessment of industrial clays Clay Minerals 1971 9 1 117 10.1180/claymin.1971.009.1.01CrossRefGoogle Scholar
Baioumy, H. M., Ismael, I. S. Composition, origin and industrial suitability of the Aswan ball clays, Egypt Applied Clay Science 2014 102 202212 10.1016/j.clay.2014.09.041CrossRefGoogle Scholar
Baraldi, L. (2018). World production and consumption of ceramic tiles, 2017. Ceramic World Review, pp. 5872, accessed at https://www.ceramicworldweb.com/en/economics-and-markets/world-production-and-consumption-ceramic-tiles-2017 on 14th March 2023.Google Scholar
Bauluz, B., Mayayo, M. J., Yuste, A., Fernandez-Nieto, C., Gonzalez Lopez, J. M. TEM study of mineral transformations in fired carbonated clays: relevance to brick making Clay Minerals 2004 39 333344 10.1180/0009855043930138CrossRefGoogle Scholar
Benkhelil, J. The origin and evolution of the Cretaceous Benue Trough, Nigeria Journal of African Earth Science 1989 8 251282 10.1016/S0899-5362(89)80028-4CrossRefGoogle Scholar
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, JMA, Hall, I. R. Factors governing abundance of hydrolysable amino acids in the sediments from the N.W. European Continental Margin (47–50°N) Progress in Oceanography 1998 42 145164 10.1016/S0079-6611(98)00032-9CrossRefGoogle Scholar
Brindley, G. W. (1980). Quantitative x-ray mineral analysis of clays. In Brindley, G. W. & Brown, G. (eds.), Crystal structures of clay minerals and their x-ray identification, Monograph 5 (pp. 411438). London: Mineralogical Society.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (1980). Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society Monograph 5, (3rd ed.). Mineralogical Society, London.CrossRefGoogle Scholar
Bun Kim, N., Hasmaliza, M., Shamsul, K. S., Kiyoshi, O., Zainal, A. A. Some ceramic properties of clays from central Cambodia Applied Clay Science 2011 53 3341 10.1016/j.clay.2011.04.017Google Scholar
Burke, K., Dessauvagie, TFJ, Whiteman, A. J. Opening of the Gulf of Guinea and geological history of the Benue Depression and Niger Delta Nature and Physical Sciences 1971 233 38 5155 10.1038/physci233051a0CrossRefGoogle Scholar
Casagrande, A. Classification and identification of soils American Society of Civil Engineers Proceedings 1947 73 6 783810Google Scholar
Celik, H. Technological characterization and industrial application of two Turkish clays for the ceramic industry Applied Clay Science 2010 50 245254 10.1016/j.clay.2010.08.005CrossRefGoogle Scholar
Chen, Y., Zhang, Y., Chen, T., Zhao, Y., Bao, S. Preparation of eco-friendly construction bricks from hematite tailings Construction and Building Materials 2011 25 21072111 10.1016/j.conbuildmat.2010.11.025CrossRefGoogle Scholar
Çolak, M., Özkan, İ Sintering properties of the Bornova shale (Turkey) and its application in the production of red fired ceramics Industrial Ceramics 2011 31 3 209215Google Scholar
Cook, H.E., Johnson, P.D., Matti, J.C., & Zemmels, I. (1975). Methods of sample preparation and X-ray diffraction data analysis. X-ray mineralogy laboratory. Pp. 9991007 in: Initial Report DSDP (Hayes, D.E., Frakes, L.A. et al., editors), 28.Google Scholar
Cratchley, C., Jones, G. P. An interpretation of the geology and gravity anomalies of the Benue Valley, Nigeria. Overseas geological Survey Geophysics, P. 1 Geological Magazine 1965 118 5967Google Scholar
Daoudi, L., Elboudour, E. H., Saadi, L., Albizane, A., Bennazha, J., Waqif, M., El Ouahabi, M., Fagel, N. Characteristics and ceramic properties of clayey materials from Amezmiz region (Western High Atlas, Morocco) Applied Clay Science 2014 102 139147 10.1016/j.clay.2014.09.029Google Scholar
Diko-Makia, L., Ligege, R. Composition and technological properties of clays for structural ceramics in Limpopo (South Africa) Minerals 2020 10 8 700 10.3390/min10080700CrossRefGoogle Scholar
Diko, M. L., Ekosse, G. I., Ayonghe, S., Ntasin, E. B. Physical characterization of clayey materials from tertiary volcanic cones in Limbe (Cameroon) for ceramic applications Applied Clay Science 2011 51 380384 10.1016/j.clay.2010.11.034CrossRefGoogle Scholar
Dondi, M., Ercolani, G., Guarani, G., Raimondo, M. Orimulsion fly ash in clay bricks. Part 1: Composition and thermal behavior of ash Journal of the European Ceramics Society 2002 22 17291735 10.1016/S0955-2219(01)00493-9CrossRefGoogle Scholar
Dondi, M., Raimondo, M., Zanelli, C. Clays and bodies for ceramic tiles: Reappraisal and technological classification Applied Clay Science 2014 96 91109 10.1016/j.clay.2014.01.013CrossRefGoogle Scholar
Ekosse, G. E. Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization Applied Clay Science 2010 50 212236 10.1016/j.clay.2010.08.003CrossRefGoogle Scholar
El Ouahabi, M., Daoudi, L., Fagel, N. Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry Clay Minerals 2014 49 3551 10.1180/claymin.2014.049.1.04CrossRefGoogle Scholar
Fagel, N., Boski, T., Likhoshway, L., Oberhaensli, H. Late Quaternary clay mineral record in Central Lake Bikal (Academician Ridge, Siberia) Paleogeography, Paleoclimatology, Paleoecology 2003 193 159179 10.1016/S0031-0182(02)00633-8CrossRefGoogle Scholar
Ferrari, S., Gualtieri, A. F. The use of illitic clays in the production of stoneware tile ceramics Applied Clay Science 2006 32 7381 10.1016/j.clay.2005.10.001CrossRefGoogle Scholar
Fiori, C., Fabbri, B., Donati, G., Venturi, I. Mineralogical composition of the clay bodies used in the Italian tile industry Applied Clay Science 1989 4 461473 10.1016/0169-1317(89)90023-9CrossRefGoogle Scholar
Galan, H. E. Mineralogia Aplicada 2003 1 Sintesis 399 ppGoogle Scholar
Garcia-Valles, M., Alfonso, P., Martinez, S., Roca, N. Mineralogical and thermal characterization of Kaolinitic clays from Terra Alta (Catalonia, Spain) Minerals 2020 10 142 10.3390/min10020142CrossRefGoogle Scholar
Gonzales, G. F., Romero, A. V., Garcia, R. G., Gonzales, R. M. Firing transformation of mixtures of clays containing illite, kaolinite and calcium carbonate used by ornamental tile industries Applied Clay Science 1990 5 4 361375 10.1016/0169-1317(90)90031-JCrossRefGoogle Scholar
Heiri, O., Lotter, A. F., Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results Journal of Paleolimnology 2001 25 101110 10.1023/A:1008119611481CrossRefGoogle Scholar
Holtz, R. D., Kovacs, W. D. An Introduction to Geotechnical Engineering 1981 Prentice-Hall Inc.Google Scholar
Huber, J. M. Kaolin Clays 1985 Huber Corporation (Clay Division) 64 ppGoogle Scholar
Kagonbe, B. P., Tsozue, D., Nzeukou, A. N., Ngos, S. Mineralogical, physico-chemical and ceramic properties of clay materials from Sekande and Gashiga (North, Cameroon) and their suitability in earthenware production Heliyon 2021 7 110 10.1016/j.heliyon.2021.e07608CrossRefGoogle ScholarPubMed
Kamseu, E., Leonelli, C., Boccaccini, D. N., Veronesi, P., Miselli, P., Pellacani, G. Characterisation of porcelain compositions using two china clays from Cameroon Ceramics International 2007 33 851857 10.1016/j.ceramint.2006.01.025CrossRefGoogle Scholar
Kazmi, SMS, Abbas, S., Saleem, M. A., Munir, M. J., Khitab, A. Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes Construction and Building Materials 2016 120 2941 10.1016/j.conbuildmat.2016.05.084CrossRefGoogle Scholar
Keller, W. D. Flint clay and flint-clay facies Clays and Clay Minerals 1968 16 113128 10.1346/CCMN.1968.0160202CrossRefGoogle Scholar
Kühnel, R. A. The modern clays of clays Applied Clay Science 1990 5 135143 10.1016/0169-1317(90)90019-LCrossRefGoogle Scholar
Lambercy, E. (1993). Les matieres premieres ceramiques et leur transformation par le feu. Granit, Vol. 1 des Dossiers Argiles, France, p. 509.Google Scholar
Lingling, X., Wei, G., Tao, W., Nanru, Y. Study on fired bricks with replacing clay by fly ash in high volume ratio Construction Building Materials 2005 9 243247 10.1016/j.conbuildmat.2004.05.017CrossRefGoogle Scholar
Lori, E.A. (2008). Feldspars and Nepheline Syenite. USGS Minerals, Yearbook.Google Scholar
Mahmoudi, S. Z. The use of Tunisian Barremian clay in the traditional ceramic industry: Optimization of ceramic properties Applied Clay Science 2008 42 125129 10.1016/j.clay.2007.12.008CrossRefGoogle Scholar
Manukaji, J. U. Chemical and mechanical characterization of clay samples from Kaduna State Nigeria IJEI 2013 2–7 2026Google Scholar
Marsigli, M., Dondi, M. Plasticita delle Argille Italiane per Laterizi e Previsione Del Loro Comportamento in Foggiatura L’industria Laterizi 1997 46 214222Google Scholar
McNally, G. H. Soil and Rock Construction Materials 1998 CRC Press 291310Google Scholar
Moharem, A. F., Saleh, AEM Properties and suitability of Wadi Zarieb Feldspars for ceramic industries in Egypt Journal of Applied Science 2007 7 19 27942799 10.3923/jas.2007.2794.2799CrossRefGoogle Scholar
Monterio, S. N., Vieira, CMF Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil Applied Clay Science 2004 27 229234 10.1016/j.clay.2004.03.002CrossRefGoogle Scholar
Moore, D. M., Reynolds, R. C. X-ray Diffraction and the identification and analysis of clay minerals 1989 Oxford University Press 332 ppGoogle Scholar
Murray, H. H. Traditional and new applications for kaolin, smectite, palygorskite: A general overview Applied Clay Science 2000 17 207221 10.1016/S0169-1317(00)00016-8CrossRefGoogle Scholar
Murray, H.H. (2007). Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite–Sepiolite and Common Clays. Developments in Clay Science; Elsevier, Amsterdam, 2, 179 pp.Google Scholar
Ngun, B. K., Mohamad, H., Sulaiman, S. K., Okada, K., Ahmad, Z. Some ceramic properties of clays from central Cambodia Applied Clay Science 2011 53 3341 10.1016/j.clay.2011.04.017CrossRefGoogle Scholar
Nwajide, C. S. Geology of Nigeria’s Sedimentary Basins 2013 CSS Bookshops Ltd 565Google Scholar
Nwajide, C.S. (1990). Cretaceous sedimentation and paleogeography of the central Benue Trough. In: Ofoegbu, C.O. (Ed). The Benue Trough structure and evolution. Earth Evolution series, viewing, Germany. Pp. 7791.Google Scholar
Nweke, O. M., Okogbue, C. O. The potential of cement stabilized shale quarry dust for possible use as road foundation material International Journal of Geo-Engineering 2017 8 29 114CrossRefGoogle Scholar
Nweke, O. M., Okogbue, C. O. Mechanical and Performance-related properties of bitumen-beneficiated indurated shale aggregates for use in road construction in southeastern Nigeria Bulletin of Engineering Geology and Environment 2021 80 12 91419156 10.1007/s10064-021-02379-zCrossRefGoogle Scholar
Obiora, S. C., Charan, S. N. Geochemistry of Regionally metamorphosed sedimentary rocks from the Lower Benue Rift: Implications for provenance and tectonic setting of the Benue Rift sedimentary suite South African Journal of Geology 2011 1 2540Google Scholar
Odoma, A. N., Obaje, N. G., Omada, J. I., Idakwo, S. O., Erbacher, J. Mineralogical, chemical composition and distribution of rare earth elements in clay-rich sediments from southeastern Nigeria Journal of African Earth Sciences 2015 102 5060 10.1016/j.jafrearsci.2014.10.013CrossRefGoogle Scholar
Okogbue, C. O., Nweke, O. M. The 226Ra, 232Th and 40K contents in the Abakaliki baked shale construction materials and their potential radiological risk to public health, southeastern Nigeria Journal of Environmental Geology 2018 2 1 1319 10.4172/2591-7641.1000012CrossRefGoogle Scholar
Olade, A. M. Evolution of Nigeria’s Benue Trough (Aulacogen) a tectonic model Geological Magazine 1979 112 575593 10.1017/S001675680003898XCrossRefGoogle Scholar
Onana, V. L., Ntouala, RFD, Mbey, J. A., Ngo’oZe, A., Kabeyene, V. K., Ekodeck, G. E. Mineralogy and preliminary assessment of the potential uses of alluvial clays from Batouri (Eastern-Cameroon) Cerâmica 2019 65 407415 10.1590/0366-69132019653752626CrossRefGoogle Scholar
Oyebanjo, O., Ekosse, G., Odiyo, J. Physico-chemical, mineralogical, and chemical characterisation of cretaceous–Paleogene/Neogene Kaolins within Eastern Dahomey and Niger Delta Basins from Nigeria: Possible industrial applications Minerals 2020 10 670 10.3390/min10080670CrossRefGoogle Scholar
Özkan, İ Ceramic properties of a Turkish clay in the Aydin region Journal of Ceramic Processing Research 2014 15 1 4447Google Scholar
Parker, E. R. Materials Data Book for Engineers and Scientists 1967 Publ. McGraw Hill Book Co 283 ppGoogle Scholar
Pavlova, I.A., Kutasheva, S.S., & Farafontova, E.P. (2019). Production technology of ceramic roof tiles based on raw materials of Ural region, IOP Conf. Series: Materials Science and Engineering, 687, 022022.Google Scholar
Peters, T., Iberg, R. Mineralogical changes during firing of calcium-rich brick clays American Ceramic Society Bulletin 1978 57 5 503506Google Scholar
Pontikes, Y., Espósito, L., Tucci, A., Angelopoulos, G. N. Thermal behavior of clays for traditional ceramics with soda–lime–silica waste glass admixture Journal of the European Ceramics Society 2007 27 16571663 10.1016/j.jeurceramsoc.2006.05.068CrossRefGoogle Scholar
Revuelta, M.B. (2021). Construction materials; Geology, Production and Applications. Springer Nature AG, Switzerland.CrossRefGoogle Scholar
Reyment, R. A. Aspects of the Geology of Nigeria 1965 University Press 154Google Scholar
Rieder, M., Cavazzini, G., Dyakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval, P. V., Müller, G., Neiva, AMR, Radoslovich, E. W., Robert, J-L, Sassi, F. P., Takeda, H., Weiss, Z., Wones, D. R. Nomenclature of micas Clays and Mineralogy 1998 46 586595 10.1346/CCMN.1998.0460513CrossRefGoogle Scholar
Ripoli, F. The use of industrial ceramic waste - Brick Powder - to improve product quality in ceramic elements manufacture: An experimental study Cerâmica 1997 43 281282Google Scholar
Rooney, D. Khmer Ceramics 1984 Oxford University PressGoogle Scholar
Semiz, B. Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia) Applied Clay Science 2017 137 8393 10.1016/j.clay.2016.12.014CrossRefGoogle Scholar
Semiz, B., Çelik, S. B. Mineralogical and geochemical characteristics of Belevi clay deposits at Denizli, SW Turkey: Industrial raw material potential Arabian Journal of Geosciences 2020 13 313 10.1007/s12517-020-05292-zCrossRefGoogle Scholar
Simpson, A. (1954). The Nigerian coalfield. The geology of parts of Onitsha, Owerri and Benue provinces. Bulletin Geological Survey Nigeria, 24(8), p 85Google Scholar
Serra, M. F., Conconi, M. S., Suarez, G., Agietti, E. F., Rendtor, N. M. Firing transformations of an Argentinean calcareous commercial clay Cerâmica 2013 59 254261 10.1590/S0366-69132013000200010CrossRefGoogle Scholar
Singer, F., Sonja, S. S. Industrial Ceramics 1971 Chapman & Hall 56Google Scholar
Skempton, A. W., Northey, R. D. The sensitivity of clays Geotechnique 1952 3 30 10.1680/geot.1952.3.1.30CrossRefGoogle Scholar
Skempton, A.W. (1953). The colloidal activity of clays. In: Proceedings of the 3rd international conference on soil mechanics, Zurich, pp. 5761.Google Scholar
Souza, G. P., Sanchez, R., De Holanda, JNF Cerâmica 2002 48 306 102 10.1590/S0366-69132002000200009CrossRefGoogle Scholar
Stock, D. World Production and Consumption of Ceramic Tile Today 2012 77 3037Google Scholar
Strazzera, B., Dondi, M., Marsigli, M. Composition and ceramic properties of tertiary clays from southern Sardinia (Italy) Applied Clay Science 1997 12 247266 10.1016/S0169-1317(97)00010-0CrossRefGoogle Scholar
Subashi De Silva, GHMJ, Malwatta, MPDP Strength, durability, thermal and run-off properties of fired clay roof tiles incorporated with ceramic sludge Construction and Building Materials 2018 179 390399 10.1016/j.conbuildmat.2018.05.187CrossRefGoogle Scholar
Teixera, S. R., Souza, S. A., Moura, C. A. Mineralogical characterization of clays used in the structural ceramic industry in West of Sao Paulo State, Brazil Cerâmica 2001 47 204207 10.1590/S0366-69132001000400007CrossRefGoogle Scholar
Temga, J. P., Mache, J. R., Madi, A. B., Nguetnkam, J. P., Bitom, D. L. Ceramics applications of clay in Lake Chad Basin, Central Africa Applied Clay Science 2019 171 118132 10.1016/j.clay.2019.02.003CrossRefGoogle Scholar
Terrones-Saeta, J. M., Suárez-Macías, J., Iglesias-Godino, F. J., Corpas-Iglesias, F. A. Study of the incorporation of biomass bottom ashes in ceramic materials for the manufacture of bricks and evaluation of their leachates Materials 2020 13 2099 10.3390/ma13092099CrossRefGoogle ScholarPubMed
Tsozue, D., Nzeukou, N. A., Mache, J. R., Loweh, S., Fagel, N. Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production Journal of Building and Engineering 2017 11 1724 10.1016/j.jobe.2017.03.008CrossRefGoogle Scholar
Viani, A., Cultrone, G., Sotiriadis, K., Ševˇcík, R., Sasek, P. The use of mineralogical indicators for the assessment of firing temperature in fired-clay bodies Applied Clay Science 2018 163 108118 10.1016/j.clay.2018.07.020CrossRefGoogle Scholar
Winkler, HGF Bedeutung der Korngrössenverteilung und des Mineralbestandes von Tonen für die Herstellung grobkeramischer Erzeugnisse Berichte Der Deutschen Keramischen Gesellschaft 1954 31 337343Google Scholar
Yongue-Fouateu, R., Ndimukong, F., Njoya, A., Kunyukubundo, F., Mbih, P. K. The Ndop plain clayey materials (Bamenda area—NW Cameroon): Mineralogical, geochemical, physical characteristics and properties of their fired products Journal of the Asian Ceramics Society 2016 4 299308 10.1016/j.jascer.2016.05.008CrossRefGoogle Scholar
Zeballos, A., Weihed, P., Blanco, M., Machaca, V. Geological, mineralogical and chemical characterization of Devonian kaolinite-bearing sediments for further applications in the ceramic (tiles) industry in La Paz, Bolivia Environmental Earth Sciences 2016 75 546 10.1007/s12665-015-5212-yCrossRefGoogle Scholar