Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T04:18:08.639Z Has data issue: false hasContentIssue false

Change of the Refractive Index of Illite Particles by Reduction of the Fe Content of the Octahedral Sheet

Published online by Cambridge University Press:  01 January 2024

Frank Friedrich*
Affiliation:
Division of Nanomineralogy, Institute for Technical Chemistry - Water and Geotechnology (ITC-WGT), Forschungszentrum Karlsruhe GmbH, Germany
Annett Steudel
Affiliation:
Division of Nanomineralogy, Institute for Technical Chemistry - Water and Geotechnology (ITC-WGT), Forschungszentrum Karlsruhe GmbH, Germany
Peter G. Weidler
Affiliation:
Division of Nanomineralogy, Institute for Technical Chemistry - Water and Geotechnology (ITC-WGT), Forschungszentrum Karlsruhe GmbH, Germany
*
* E-mail address of corresponding author: frank.friedrich@itc-wgt.fzk.de

Abstract

Sub-micrometer clay particles are of interest in clay-polymer applications, especially when transparency is important. The scattering of light can be reduced by the adjustment of the refractive index (RI) of the clays to that of the matrix. In this study, the RI of sub-micrometer illite particles was changed by treatment with 5 M HCl for treatment times ranging between 2 and 24 h. The dissolution of Fe leads to a decrease in the RI of illite from 1.587 for the unaltered material to 1.502 after 24 h. The layer structure of the illite particles was preserved during the treatment. The RI of the sub-micrometer illite particles was determined by means of a photospectrometer measuring the light intensity passing through suspensions containing the clay particles, with varying refractive indices.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, M. and Dubois, P., 2000 Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials Materials Science and Engineering 28 163 10.1016/S0927-796X(00)00012-7.CrossRefGoogle Scholar
Aranda, P. Darder, M. Fernández-Saavedra, R. Lopez-Blanco, M. and Ruiz-Hitzky, R., 2006 Relevance of polymer- and biopolymer-clay nanocomposites in electrochemical and electroanalytical applications Thin Solid Films 495 104112 10.1016/j.tsf.2005.08.284.CrossRefGoogle Scholar
Avella, M. De Vlieger, J.J. Errico, M.E. Fischer, S. and Volpe, M.G., 2005 Biodegradable starch/clay nanocomposite films for food packaging applications Food Chemistry 93 467474 10.1016/j.foodchem.2004.10.024.CrossRefGoogle Scholar
Bergmann, L. and Schaefer, C., 1999 Optics of Waves and Particles New York Walter de Gruyter 1400 pp.Google Scholar
Bloss, F.D., 1999 Optical Crystallography Washington, D.C. Mineralogical Society of America 239 pp.Google Scholar
Feynman, R.P. Leighton, R.B. and Sand, M., 1991 Feynman Vorlesungen über Physik, Bd. II: Hauptsächlich Elektromagnetismus und Struktur der Materie München, Vienna R. Oldenbourg Verlag 851 pp.Google Scholar
Gilg, H.A., Haus, R., and Frei, R. (1997) A new illite deposit near le-Puy-en-Velay (France) — genesis and usage for waste encapsulation. Pp. 717720 in: Mineral Deposits: Research and Exploration — Where do they Meet? (Papunen, H., editor). Procedings of the 4th Biennial SGA Meeting, Turku, Finland, Balkema Press, Rotterdam.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Physics and Chemistry of Minerals 7 223238 10.1007/BF00311893.CrossRefGoogle Scholar
Jasmund, K. and Lagaly, G., 1993 Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt Darmstadt. Germany Steinkopff Verlag 490 pp.Google Scholar
Köhler, S.J. Dufaud, D. and Oelkers, E.H., 2003 An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C Geochimica et Cosmochimica Acta 6 35833594 10.1016/S0016-7037(03)00163-7.CrossRefGoogle Scholar
Nussbaumer, R.J. Halter, M. Tervoort, T. Caseri, W.R. and Smith, P., 2005 A simple method for the determination of refractive indices of (rough) transparent solids Journal of Materials Science 40 575582 10.1007/s10853-005-6291-z.CrossRefGoogle Scholar
Okada, A. and Usuki, A., 2006 Twenty years of polymer-clay nanocomposites Macromolecular Materials and Engineering 291 14491476 10.1002/mame.200600260.CrossRefGoogle Scholar
Rhim, J.W. and Ng, P.K.W., 2007 Natural biopolymer-based nanocomposite films for packaging applications Critical Reviews in Food Science and Nutrition 47 411433 10.1080/10408390600846366.CrossRefGoogle ScholarPubMed
Scott, A.D. and Smith, S.J., 1966 Susceptibility of interlayer potassium in micas to exchange with sodium Clays and Clay Minerals 14 6981 10.1346/CCMN.1966.0140106.CrossRefGoogle Scholar
Tetsuka, H. Ebina, T. Nanjo, H. and Mizukami, F., 2007 Highly transparent flexible clay films modified with organic polymer: Structural characterization and intercalation properties Journal of Materials Chemistry 17 35453550 10.1039/b705063a.CrossRefGoogle Scholar
Tröger, W.E., 1982 Optische Bestimmung der gesteinsbildende Minerale. Teil 1: Bestimmungstabellen 3rd Stuttgart, Germany Schweizerbartsche Verlagsbuchhandlung 188 pp.Google Scholar
Weidler, P.G. and Friedrich, F., 2007 Determination of the refractive index of particles in the clay and sub-µm size range American Mineralogist 92 11301132 10.2138/am.2007.2313.CrossRefGoogle Scholar
Wilcox, R.E., 1983 Refractive index determination using the central focal masking technique with dispersion colors American Mineralogist 68 12261236.Google Scholar
Wilcox, R.E. and Bailey, S.W., 1984 Optical properties of mica under the polarizing microscope Micas Washington, D.C Mineralogical Society of America 183200 10.1515/9781501508820-010.CrossRefGoogle Scholar
Zeng, Q.H. Yu, A.B. Lu, G.Q. and Paul, D.R., 2005 Clay-based polymer nanocomposites: research and commercial development Journal of Nanoscience and Nanotechnology 5 15741592 10.1166/jnn.2005.411.CrossRefGoogle ScholarPubMed