Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-07T17:23:35.690Z Has data issue: false hasContentIssue false

Chemisorption of Copper on Hydroxy-Aluminum-Hectorite: An Electron Spin Resonance Study

Published online by Cambridge University Press:  02 April 2024

J. B. Harsh
Affiliation:
Department of Plant and Soil Biology, University of California, Berkeley, California 94720
H. E. Doner
Affiliation:
Department of Plant and Soil Biology, University of California, Berkeley, California 94720
M. B. McBride
Affiliation:
Department of Agronomy, Cornell University, Ithaca, New York 14853

Abstract

Copper adsorption on a hydroxy-aluminum-hectorite complex (OH-Al-hectorite) at pH 4.5, 5.7, 7.4, and 7.8 was examined by means of electron spin resonance. The spectra of these samples were compared to those of Cu2+-hectorite and various aluminum hydrous oxides. Copper on the OH-Al-hectorite in aqueous gels occurred as mobile Cu(H20)62+ and chemisorbed to discrete sites of the OH-Al interlayer. As pH was increased, the ratio of chemisorbed to mobile Cu2+ increased. At pHs above 7 the solubility product of Cu(OH)2 was exceeded, but chemisorbed Cu2+ remained as the dominant species. These results contrast with the precipitation of Cu observed on microcry stalline gibbsite above pH 5 and indicate that the interlayer OH-A1 retained more Cu2+ on discrete sites. The greater adsorption capacity probably resulted in part from a higher specific surface area. Electron spin resonance spectra of Cu2+ in air-dried films of the OH-Al-hectorite at pH 4.5 and 7.4 showed Cu2+ in square planar symmetry, oriented with the z-axis perpendicular to the OH-Al-hectorite a-b plane. At the higher pH, the spectrum resembled that of Cu(OH)42- on alumina, suggesting a ligand exchange mechanism for Cu2+ adsorption on the complex.

Резюме

Резюме

Адсорбция меди комплексом гидрокси-алюминий-гекторит (ОН-Аl-гекторит) при рН рав¬ным 4,5, 7,4, и 7,8 исследовалась при помощи електронного спинового резонанса. Спектры этих образцов сравнивались со спектрами Сu2+-гекторита и различных водных окисей алюминия. Медь на ОН-Аl-гекторите в водных гелях залегала в виде Си(Н2O)62+ и хемисорбировалась на дискретных местах слоя ОН-Аl. При увеличении рН, отношение хемисорбированных ионов к подвижным ионом Сu2+ также увеличивалось. При значениях рН выше 7, величина произведения растворимости Си(ОН)2 превышалась, но хемисорбированный Сu2+ оставался главным видом. Эти результаты сопоставлялись с осаждением Си, наблюдаемому на микрокристаллическом гиббсите при рН выше 5, и указывали на то, что слой ОН-Аl удерживал большое количество Сu2+ на дискретных местах. Большая адсорб¬ционная способность была, вероятно, частично результатом большой удельной площади поверхности. Спектры электронного спинового резонанса Сu2+ в осушенных на воздухе фильмах ОН-Аl-гекторита при рН равных 4,5 и 7,4 указывали на квадратную плоскую симметрию Сu2+ с осей 2 по направлению нормальному к плоскости a-b ОН-Аl-гекторита. При высших рН, спектр был похожий на Си(ОН)42− на глиноземе, указывая на лигандовый механизм обмена для адсорбции Cu2+ комплексом. [E.G.]

Resümee

Resümee

Die Kupferadsorption an einen Hydroxy-Al-Hektoritkomplex (OH-Al-Hektorit) wurde bei pH 4,5, 5,7, 7,4, und 7,8 mittels Elektronenspinresonanz untersucht. Die Spektren dieser Proben wurden mit denen von Cu2+-Hektorit und verschiedenen wasserhaltigen Al-Oxiden verglichen. Das Kupfer trat an dem OH-Al-Hektorit in wässrigen Gelen als mobiles Cu(H20)62+ auf und chemisorbierte an bestimmten Plätzen der OH-Al-Zwischenschicht. Wenn der pH zunahm, dann nahm das Verhältnis des chemisor-bierten zum mobilen Cu2+ zu. Bei pH-Werten über 7 wurde das Löslichkeitsprodukt von Cu(OH)2 überschritten, doch das chemisorbierte Cu2+ überwog weiterhin. Diese Ergebnisse stehen im Gegensatz mit der Ausfällung von Cu, die an mikrokristallinem Gibbsit über pH 5 beobachtet wurde, und deuten darauf hin, daß die OH-Al-Zwischenschicht mehr Cu2+ an bestimmten Stellen zurückhielt. Die größere Adsorptionskapazität resultierte wahrscheinlich zum Teil aus einer größeren spezifischen Oberfläche. Elektronenspinresonanzspektren von Cu2+ in Luft-getrockneten Schichten von OH-Al-Hektorit bei pH 4,5 und 7,5 zeigten, daß Cu2+ in einer quadratischen planaren Symmetrie auftritt und mit der z-Achse senkrecht zu der a-b-Ebene des OH-Al-Hektorit orientiert ist. Bei höheren pH-Werten ähnelt das Spektrum dem von Cu(OH)42~ an Aluminiumoxid, was auf einen Ligandenaustauschmechanismus für die Cu2+-Adsorption an den Komplex hindeutet. [U.W.]

Résumé

Résumé

On a examiné au moyen de la résonnance à spin d’électrons l'adsorption de cuivre sur un complexe hectorite-hydroxy-aluminium (OH-Al-hectorite) aux pH 4,5, 5,7, 7,4, et 7,8. Les spectres de ces échantillons ont été comparés à ceux de l'hectorite Cu2+ et d'oxides aluminium hydres variés. Le cuivre sur l'hectorite OH-A1 dans des gels aqueux se trouve sous forme de Cu(H20)62+ mobile et a chémisorbé à des sites discrets de l'intercouche OH-A1. Au fur et à mesure de l'augmentation du pH, la proportion de Cu2+ chémisorbé a augmenté par rapport au Cu2+ mobile. Aux pH au dessus de 7, le produit de solubilité de Cu(OH)2 a été excédé, mais Cu2+ chémisorbé est resté l'espèce dominante. Ces résultats contrastent avec la précipitation de Cu observé sur la gibbsite microcristalline au dessus du pH 5, et indiquent que l'intercouche OH-A1 a retenu plus de Cu2+ sur des sites discrets. La capacité d'adsorption plus grande était en partie le résultat d'une aire de surface spécifique plus élevée. Les spectres de spin à résonnance d’électrons de Cu2+ dans des films d'hectorite OH-A1 sechés à l'air aux pH 4,5 et 7,4 a montre Cu2+ en symmétrie plane carrée, orienté avec l'axe-z perpendiculaire au plan a-b de l'hectorite OH-A1. Au pH plus élevé, le spectre ressemblait à celui de Cu(OH)42_ sur l'alumine, suggérant un mécanisme d’échange de ligand pour l'adsorption de Cu2+ sur le complexe. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baes, C. F. and Mesmer, R. E., 1976 The Hydrolysis of Cations .Google Scholar
Barnhisel, R. I., Dixon, J. B. and Weed, S. B., 1977 Chlorites and hydroxy interlayered vermiculite and smectite Minerals in Soil Environments Wisconsin Soil Science Society of America, Madison 331356.Google Scholar
Barshad, I. and Foscolos, A. E., 1970 Factors affecting the rate of the interchange reaction of adsorbed H+ on the 2:1 clay minerals Soil Science 110 5260.CrossRefGoogle Scholar
Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M., 1973 Stereochemistry of hydrated coppelli) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study J. Phys. Chem. 11 196200.CrossRefGoogle Scholar
Harsh, J. B. and Doner, H. E., 1984 Specific adsorption of copper on an hydroxy-aluminum complex Soil Sci. Soc. Amer. J. .CrossRefGoogle Scholar
Jepson, W. B., Jeffs, D. G. and Ferris, A. P., 1976 The adsorption of silica on gibbsite and its relevance to the kaolinite surface J. Coll. Interface Sci. 55 454461.CrossRefGoogle Scholar
Keller, W. D. and Stevens, R. P., 1983 Physical arrangement of high-alumina clay types in a Missouri clay deposit and implications for their genesis Clays & Clay Minerals 31 422434.CrossRefGoogle Scholar
Kinniburgh, D. G., Jackson, M. L. and Syers, J. K., 1976 Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum Soil Sci. Soc. Amer. J. 40 796799.CrossRefGoogle Scholar
Kivelson, D. and Neiman, R., 1961 ESR studies on the bonding in copper complexes J. Chem. Phys. 35 149155.CrossRefGoogle Scholar
McBride, M. B., 1978 Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by amorphous alumina Soils Sci. Soc. Amer. J. 42 2731.CrossRefGoogle Scholar
McBride, M. B., 1982 Cu2+ adsorption characteristics of aluminum hydroxides and oxyhydroxides Clays & Clay Minerals 30 2128.CrossRefGoogle Scholar
McBride, M. B., 1982 Hydrolysis and dehydration reactions of exchangeable Cu2+ on hectorite Clays & Clay Minerals 30 200206.CrossRefGoogle Scholar
McBride, M. B., Fraser, A. R. and McHardy, W. J., 1984 Cu2+ interaction with microcrystalline gibbsite. Evidence for oriented chemisorbed copper ions Clays & Clay Minerals 32 1218.CrossRefGoogle Scholar
Ottaviani, M. F. and Martini, G., 1980 Adsorption of the Cu(OH)4 2− complex on aluminas studied by electron spin resonance J. Phys. Chem. 84 2320 2315.CrossRefGoogle Scholar
Parfitt, R. L., Fraser, A. R., Russell, J. D. and Farmer, V. C., 1977 Adsorption on hydrous oxides II. Oxalate, benzoate, and phosphate on gibbsite J. Soil Sci. 28 4047.CrossRefGoogle Scholar
Perrott, D. W., 1977 Surface charge characteristics of amorphous aluminosilicates Clays & Clay Minerals 25 417421.CrossRefGoogle Scholar
Poupko, R. and Luz, Z., 1972 ESR and NMR in aqueous and methanol solutions of coppelli) solvates. Temperature and magnetic field dependence of electron and nuclear spin relaxation J. Chem. Phys. 57 33113318.CrossRefGoogle Scholar
Pyman, M. A. F., Bowden, J. W. and Posner, A. M., 1979 The point of zero charge of amorphous coprecipitates of silica with hydrous aluminum or ferric hydroxide Clay Miner. 14 8792.CrossRefGoogle Scholar
Slaughter, M., Milne, I. H. and Swineford, A., 1958 The formation of chlorite-like structures from montmorillonite Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958 New York Pergamon Press 114124.Google Scholar
Tiller, K. G., 1968 Stability of hectorite in weakly acidic solutions. I. A chemical study of the dissolution of hectorite with special reference to the release of silica Clay Miner. 7 245270.CrossRefGoogle Scholar
Tschapek, M., Tcheichvili, L. and Wasowski, C., 1974 The point of zero charge (pzc) of kaolinite and SiO2 + A12O3 mixtures Clay Miner. 10 219229.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E., 1965 Factors affecting the solubility of Al(OH)3 precipitated in the presence of mont-morillomite Soil Sci. 100 176181.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Non-Metallic Minerals New York Pergamon Press.Google Scholar
Wertz, J. E. and Bolton, J. R., 1972 Electron Spin Resonance: Elementary Theory and Practical Applications New York McGraw-Hill 197.Google Scholar