Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-30T10:46:24.437Z Has data issue: false hasContentIssue false

Clay-Sized Minerals in Permafrost-Affected Soils (Cryosols) From King George Island, Antarctica

Published online by Cambridge University Press:  01 January 2024

Felipe N. B. Simas*
Affiliation:
Mestrado em Meio Ambiente e Sustentabilidade, UNEC - Centro Universitário de Caratinga, Av. Moacyr de Mattos, Centro, Caratinga, 35300-000, Minas Gerais, Brazil
Carlos Ernesto G. R. Schaefer
Affiliation:
Departamento de Solos, — Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, 36570-000, Minas Gerais, Brazil
Vander F. Melo
Affiliation:
Departamento de Solos e Engenharia Agrícola, — Universidade Federal do Paraná, Rua dos Funcionários, 1540 - Juvevê, 80035-070 — Curitiba — Paraná, Brazil
Marcelo B. B. Guerra
Affiliation:
Departamento de Solos, — Universidade Federal de Viçosa, Av. PH Rolfs s/n, Viçosa, 36570-000, Minas Gerais, Brazil
Martin Saunders
Affiliation:
Centre for Microscopy and Microanalysis — The University of Western Australia, Nedlands, WA, 6009, Australia
Robert J. Gilkes
Affiliation:
School of Earth and Geographical Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
*
*E-mail address of corresponding author: fsimass@yahoo.com.br

Abstract

Cryosols from Maritime Antarctica have been less studied than soils from continental areas of Antarctica. In this work X-ray diffraction, difference X-ray diffraction, differential thermal analysis, thermogravimetry, transmission electron microscopy/energy dispersive spectroscopy and selective chemical dissolution were used to characterize the clay fraction of basaltic, acid sulfate and ornithogenic Cryosols from ice-free areas of Admiralty Bay, King George Island. Non-crystalline phases are important soil components and reach >75% of the clay fraction for some ornithogenic soils. Randomly interstratified smectite-hydroxy-Al-interlayered smectite is the main clay mineral of basaltic soils. Kaolinite, chlorite and regularly interstratified illite-smectite predominate in acid sulfate soils. Jarosite is also an important component of the clay fraction in these soils. Crystalline Al and Fe phosphates occur in the clay at sites directly affected by penguin activity and the chemical characteristics of these ornithogenic sites are controlled by highly reactive, non-crystalline Al, Si, Fe and P phases. Chemical weathering is an active process in Cryosols in Maritime Antarctica and is enhanced by the presence of sulfides for some parent materials, and faunal activity.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnhisel, R.I. Bertsch, P.M., Dixon, J.B. and Weed, S.B., (1989) Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 730779.Google Scholar
Bergkraut, V. Singer, A. and Stahr, K., (1994) Palagonite reconsidered: Paracrystalline illite:smectites from regoliths on basic pyroclastics Clays and Clay Minerals 42 582592 10.1346/CCMN.1994.0420511.Google Scholar
Birkenmajer, K., (2001) Retreat of the Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001 Bulletin of the Polish Academy of Sciences. Earth Sciences 50 1629.Google Scholar
Blume, H.P. Beyer, L. Kalk, E. Kuhn, D., Beyer, L. and Bölter, M., (2002) Weathering and soil formation Geoecology of Antarctic Ice-Free Coastal Landscapes Berlin Spinger-Verlag 114138.Google Scholar
Blume, H.P. Chen, J. Kalk, E. Kuhn, D. and Kimble, J., (2004) Mineralogy and weathering of Antarctic Cryosols Cryosols — Permafrost Affected Soils Berlin Springer-Verlag 415426.Google Scholar
Bockheim, J.G. and Tarnocai, C., (1998) Recognition of cryoturbation for classifying permafrost-affected soils Geoderma 81 281293 10.1016/S0016-7061(97)00115-8.CrossRefGoogle Scholar
Borchardt, G., Dixon, J.B. and Weed, S.B., (1989) Smectites Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 675718.Google Scholar
Brindley, G.W. and Brown, G., (1980) Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Campbell, I.B. and Claridge, G.G.C., (1987) Antarctica: Soils, Weathering Processes and Environment Amsterdam Elsevier 368 pp.Google Scholar
Campbell, I.B. Claridge, G.G.C. and Kimble, J., (2004) Cryosols in the extremely arid Transarctic Mountains Region of Antarctica Cryosols — Permafrost Affected Soils Berlin Springer-Verlag 391414.Google Scholar
Campbell, I.B. Claridge, G.G.C. and Kimble, J., (2004) Weathering processes in arid Cryosols Cryosols — Permafrost Affected Soils Berlin Springer-Verlag 447458.Google Scholar
Campbell, A.S. and Schwertmann, U., (1985) Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction Clay Minerals 20 515519 10.1180/claymin.1985.020.4.07.CrossRefGoogle Scholar
Dahlgren, R.A., Amonette, J.E. and Zelazny, L.W., (1994) Quantification of allophane and imogolite Quantitative Methods in Soil Mineralogy Madison, Wisconsin Soil Science Society of America 430448.Google Scholar
Doner, H.E. Lynn, W.C., Dixon, J.B. and Weed, S.B., (1989) Carbonates, Halide, Sulfate, and Sulfide Minerals. Smectite Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 279324.Google Scholar
Drees, L.R. Wilding, L.P. Smeck, N.E. Senkayi, A.L., Dixon, J.B. and Weed, S.B., (1989) Silica in soils: quartz and disordered silica polymorphs Minerals in Soil Environments Madison Soil Science Society of America 914965.Google Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps Geoderma 104 145175 10.1016/S0016-7061(01)00079-9.CrossRefGoogle Scholar
EMBRAPA — Centro Nacional de Pesquisa de Solos, Manual de métodos de análise de solo (1997) Rio de Janeiro Centro Nacional de Pesquisa de Solos 212 pp.Google Scholar
Farmer, V.C. Fraser, A.R. and Tait, J.M., (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy Geochimica et Cosmochimica Acta 43 14171420 10.1016/0016-7037(79)90135-2.CrossRefGoogle Scholar
Gardolinski, J.E. Wypych, F. and Cantao, M.P., (2001) Esfoliação e hidratação da caulinita após intercalação com ureia Química Nova 24 767775 10.1590/S0100-40422001000600010.CrossRefGoogle Scholar
Gee, G.W. Bauder, J.W. and Klute, A., (1986) Particle-size analysis Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods Madison, Wisconsin Soil Science Society of America 383412.Google Scholar
Jackson, M.L., (1979) Soil Chemical Analysis — Advanced Course Madison, Wisconsin Prentice-Hall 895 pp.Google Scholar
Jackson, M.L. Lim, C.H. Zelazny, L.W. and Klute, A., (1986) Oxides, hydroxides, and aluminosilicates Methods of Soil Analysis Part 1: Physical and Mineralogical Methods Madison, Wisconsin Soil Science Society of America 101150.Google Scholar
Jeong, G.Y. and Yoon, H.I., (2001) The origin of clay minerals in soils of King George Island, South Shetlands Islands, West Antarctica, and its implications for the clay-mineral composition of marine sediments Journal of Sedimentary Research 71 833842 10.1306/2DC4096C-0E47-11D7-8643000102C1865D.CrossRefGoogle Scholar
Kelly, W.C. and Zumberge, J.H., (1961) Weathering of a quartz diorite at Marble Point, McMurdo Sound, Antarctica Journal of Geology 69 433446 10.1086/626759.CrossRefGoogle Scholar
Melo, V.F. Novais, R.F. Schaefer, CEGR Fontes, M.P.F. and Singh, B., (2002) Mineralogia das frações areia, silte e argila de sedimentos do Grupo Barreiras no município de Aracruz, estado do Espírito Santo Revista Brasileira de Ciência do Solo 26 2235.Google Scholar
Melo, V.F. Schaefer, CEGR Novais, R.F. Singh, B. and Fontes, M.P.F., (2002) Potassium and magnesium in clay minerals of some Brazilian soils as indicated by a sequential extraction procedure Communication in Soil Science and Plant Analysis 33 22032225 10.1081/CSS-120005757.CrossRefGoogle Scholar
Myrcha, A. Pietr, S.J. Tatur, A., Siegfried, W.R. Condy, P.R. and Laws, R.M., (1985) The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island Antarctic Nutrient Cycles and Food Webs Berlin Springer-Verlag 156163 10.1007/978-3-642-82275-9_21.CrossRefGoogle Scholar
Nriagu, J.O. and Moore, P.B., (1984) Phosphate Minerals Berlin Springer-Verlag 10.1007/978-3-642-61736-2 442 pp.CrossRefGoogle Scholar
Ostroumov, V. and Kimble, J., (2004) Physico-chemical processes in cryogenic soils Cryosols — Permafrost Affected Soils Berlin Springer-Verlag 347365.Google Scholar
Parfitt, R.L., (1990) Allophane in New Zealand — areview Australian Journal of Soil Research 28 343360 10.1071/SR9900343.CrossRefGoogle Scholar
Parfitt, R.L. and Kimble, J.M., (1989) Conditions for formation of allophane in soils Soil Science Society of America Journal 53 971977 10.2136/sssaj1989.03615995005300030057x.CrossRefGoogle Scholar
Parfitt, R.L. and Wilson, A.D., (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand Catena Supplement 7 18.Google Scholar
Sawhney, B.L., Dixon, J.B. and Weed, S.B., (1989) Interstratification in layer silicates Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 789824.Google Scholar
Schulze, D.G., Amonette, J E and Zelazny, L.W., (1994) X-ray diffraction analysis of soil minerals Quantitative Methods in Soil Mineralogy Madison, Wisconsin Soil Science Society of America 412429.Google Scholar
Schwertmann, U., (1973) Use of oxalate for Fe extraction from soils Canadian Journal of Soil Science 53 244246 10.4141/cjss73-037.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.R.G., Albuquerque Filho, M.R., Melo, V.F., Michel, R.F.M., Pereira, V.V. and Gomes, M.R.M. (2005) Pedogenesis and selected mineralogical and micropedological attributes of ornithogenic Cryosols in Maritime Antarctica: phosphatization as a soil-forming process. Geoderma (in review).Google Scholar
Smith, B.F.L. and Wilson, M.J., (1994) Characterization of poorly ordered minerals by selective chemical methods Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 333353 10.1007/978-94-011-0727-3_9.CrossRefGoogle Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., (1984) Illite Micas Washington, D.C Mineralogical Society of America 495539 10.1515/9781501508820-016.CrossRefGoogle Scholar
Tan, K.B. Hajek, B.F. Barshad, I. and Klute, A., (1986) Thermal analysis techniques Methods of Soil Analysis — Part I: Physical and Mineralogical Methods Madison, Wisconsin Soil Science Society of America 151183.Google Scholar
Tatur, A., (1989) Ornithogenic soils of the maritime Antarctic Polish Polar Research 4 481532.Google Scholar
Tatur, A. Barczuk, A., Siegfried, W.R. Condy, P.R. and Laws, R.M., (1985) Ornithogenic phosphates on King George Island, Maritime Antarctic Antarctic Nutrient Cycles and Food Webs Berlin Springer-Verlag 163169 10.1007/978-3-642-82275-9_22.CrossRefGoogle Scholar
Tatur, A. Myrcha, A. and Rakusa-Suszczewski, S., (1993) Ornithogenic soils The Antarctic Coastal Ecosystem of Admiralty Bay Warsaw Polish Academy of Sciences 161165.Google Scholar
Tatur, A. Myrcha, A. and Niegodzisz, J., (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic Polar Biology 17 405417 10.1007/s003000050135.CrossRefGoogle Scholar
Van Vliet-Lanoë, B. Fox, C.A. Gubin, S.V. and Kimble, J.M., (2004) Micromorphology of Cryosols Cryosols — Permafrost-affected Soils Berlin Springer-Verlag 365391.Google Scholar
Wada, K., Dixon, J.B. and Weed, S.B., (1989) Allophane and imogolite Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 10521081.Google Scholar
Wilson, M.J., (1999) The origin and formation of clay minerals in soils: past, present and future perspectives Clay Minerals 34 725 10.1180/000985599545957.CrossRefGoogle Scholar
Yeomans, J.C. and Bremner, J.M., (1988) A rapid and precise method for routine determination of organic carbon in soil Communications in Soil Science and Plant Analysis 19 14671476 10.1080/00103628809368027.CrossRefGoogle Scholar
Yong, I.L. Lim, H.S. and Yoon, H.I., (2004) Geochemistry of soils of King George Island, South Shetlands Islands, West Antarctica: Implications for pedogenesis in cold polar regions Geochimica et Cosmochimica Acta 68 43194333 10.1016/j.gca.2004.01.020.Google Scholar
Yoshinaga, N. and Wada, K., (1986) Mineralogical characteristics. II. Clay minerals Ando Soils in Japan Japan Kyushu University Press 4156.Google Scholar