Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-12T12:57:00.990Z Has data issue: false hasContentIssue false

Comparison of Experimental and Calculated X-Ray Powder Diffraction Data for Boehmite

Published online by Cambridge University Press:  02 April 2024

Rodney T. Tettenhorst
Affiliation:
Department of Geology and Mineralogy, Ohio State University, Columbus, Ohio 43210
Charles E. Corbató
Affiliation:
Department of Geology and Mineralogy, Ohio State University, Columbus, Ohio 43210

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1988, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

The term crystallite is herein used to mean the coherent X-ray scattering volume which is normally less than or equal to the volume of the “crystal” (if it is an individual) or a “grain” if it is composed of one or more crystals.

References

Baker, B. R. and Pearson, R. M., 1974 Water content of pseudoboehmite: A new model for its structure J. Catal. 33 265278.CrossRefGoogle Scholar
Christoph, G. G., Corbató, C. E., Hofmann, D. A. and Tettenhorst, R., 1979 The crystal structure of boehmite Clays & Clay Minerals 27 8186.CrossRefGoogle Scholar
Corbató, C. E., Tettenhorst, R. T. and Christoph, G. G., 1985 Structure refinement of deuterated boehmite Clays & Clay Minerals 33 7175.CrossRefGoogle Scholar
Grebille, D. and Bérar, J.-F., 1985 Calculation of diffraction line profiles in the case of a major size effect: Application to boehmite AlOOH J. Appl. Cryst. 18 301307.CrossRefGoogle Scholar
Grebille, D. and Bérar, J.-F., 1986 Calculation of diffraction line profiles in the case of coupled stacking fault and sizeeffect broadening: Application to boehmite AlOOH J. Appl. Cryst. 19 249254.CrossRefGoogle Scholar
Grebille, D., Dupin, T., Bérar, J.-F. and Grégoire, P., 1983 Caractérization de gels d’hydroxide d’aluminium préparés à partir d’oxychlorures d’aluminium Ann. Chim. Fr. 8 435446.Google Scholar
Hill, R. J., 1981 Hydrogen atoms in boehmite: A single crystal X-ray diffraction and molecular orbital study Clays & Clay Minerals 29 435445.CrossRefGoogle Scholar
Minami, N. and Ino, T., 1979 Diffraction profiles from small crystallites Acta Cryst. A35 171176.CrossRefGoogle Scholar
Papée, D., Tertian, R. and Biais, R., 1958 Recherches sur la constitution des gels et des hydrates cristallisés d’alumine Bull. Soc. Chim. Fr. Mem. Ser. 5 13011310.Google Scholar
Reichertz, P. P. and Yost, W. J., 1946 The crystal structure of synthetic boehmite J. Chem. Phys. 14 495501.CrossRefGoogle Scholar
Sahama, T. G., Lehtinen, M. and Rehtijärvi, P., 1973 Natural boehmite single crystals from Ceylon Contr. Miner. Petrol. 39 171174.CrossRefGoogle Scholar
Tettenhorst, R. and Hofmann, D. A., 1980 Crystal chemistry of boehmite Clays & Clay Minerals 28 373380.CrossRefGoogle Scholar
Tiensuu, V. H., Ergun, S. and Alexander, L. E., 1964 X-ray diffraction from small crystallites J. Appl. Phys. 35 17181720.CrossRefGoogle Scholar
Violante, A. and Huang, P. M., 1984 Nature and properties of pseudoboehmites formed in the presence of organic and inorganic ligands Soil Sci. Soc. Amer. J. 48 11931201.CrossRefGoogle Scholar
Warren, B. E., 1969 X-ray diffraction Massachusetts Addison-Wesley, Reading 116119.Google Scholar