Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-01T00:08:34.380Z Has data issue: false hasContentIssue false

Convenient Technique for Estimating Smectite Layer Percentage in Randomly Interstratified Illite/Smectite Minerals

Published online by Cambridge University Press:  02 April 2024

Atsuyuki Inoue*
Affiliation:
Laboratoire de Pétrologie des Altérations Hydrothermales, UA 721 CNRS, Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Alain Bouchet
Affiliation:
Laboratoire de Pétrologie des Altérations Hydrothermales, UA 721 CNRS, Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Bruce Velde*
Affiliation:
Laboratoire de Pétrologie des Altérations Hydrothermales, UA 721 CNRS, Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Alain Meunier
Affiliation:
Laboratoire de Pétrologie des Altérations Hydrothermales, UA 721 CNRS, Université de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*
1Present address: Geological Institute, College of Arts and Sciences, Chiba University, Chiba 260, Japan.
2Laboratoire de Góologie, ER 224 CNRS, Ecole Normale Supórieure, 24, rue Lhomond, 75231 Paris Cedex 05, France.

Abstract

The validity of the saddle/001 method for estimating the percentage of smectite layers in randomly interstratified illite/smectite (I/S) minerals as a routine laboratory technique has been examined with respect to the effects of the crystallite size distribution (N = number of layers) of I/S and the degree of preferred orientation of crystallites in the prepared specimen. X-ray powder diffraction experiments of I/S clays indicated that the crystallite size distribution was 3 < N < 12; these values were supported satisfactorily by the variation of the d(002) value of the samples. An analysis of the Lorentz factor concerning the degree of preferred orientation of crystallites indicated that a calibration curve calculated using the random powder Lorentz factor and the above crystallite size distribution fit the data better than an assumption of perfect orientation. Consequently, if a calibration curve of the saddle/001 ratio is used to estimate the percentage of smectite layers in I/S, an error of 10–15% should be expected from the variable crystallite size distribution of actual samples, in which I/S dominates over other phyllosilicate phases that give reflection between 10–14 Å. This method is useful, however, in estimating the relative percentage of smectite layers in randomly interstratified I/S for samples examined under identical experimental conditions.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structure Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125195.CrossRefGoogle Scholar
Brusewitz, A. M., 1986 Chemical and physical properties of Paleozoic potassium bentonites from Kinnekulle, Sweden Clays & Clay Minerals 34 442454.CrossRefGoogle Scholar
Brusewitz, A. M., 1988 Asymmetric zonation of a thick Ordovician K-bentonite bed at Kinnekulle, Sweden Clays & Clay Minerals 36 349353.CrossRefGoogle Scholar
Eslinger, E. V. and Savin, S. M., 1976 Mineralogy and O18/O16 ratios of the fine-grained quartz and clay from site 323 Init. Reports on the Deep Sea Project 35 489496.Google Scholar
Güven, N., Hower, W. F. and Davies, D. K., 1980 Nature of authigenic illites in sandstone reservoirs J. Sedim. Petrol 50 761766.Google Scholar
Hoffman, J., 1979 Regional metamorphism and K/Ar dating of clay minerals in Cretaceous sediments of the disturbed belt of Montana Cleveland, Ohio Case Western Reserve University.Google Scholar
Hower, J., 1981 X-ray diffraction identification of mixed-layer clay minerals Clays and the Resource Geologist 7 3959.Google Scholar
Inoue, A., 1986 Morphological change in a continuous smectite-to-illite conversion series by scanning and transmission electron microscopies J. Coll. Arts & Sci., Chiba Univ B–19 2333.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120.CrossRefGoogle Scholar
Inoue, A., Minato, H. and Utada, M., 1978 Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga-Omono district Clay Sci 5 123136.Google Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays & Clay Minerals 31 401412.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. and Touchard, G., 1988 Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system Amer. Mineral 73 13251334.Google Scholar
Kakinoki, J. and Komura, Y., 1952 Intensity of X-ray diffraction by a one-dimensionally disordered crystal. I. General derivation in cases of “Reichweite” S = 0 and 1 J. Phys. Soc. Japan 7 3035.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E., 1974 X-ray Diffraction Procedures New York Wiley.Google Scholar
McHardy, W. J., Wilson, M. J. and Tait, J. M., 1982 Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field Clay Miner 17 2339.CrossRefGoogle Scholar
Nadeau, P. H., Tait, J. M., McHardy, W. J. and Wilson, M. J., 1984 Interstratified XRD characteristics of physical mixtures of elementary clay particles Clay Miner 19 6776.CrossRefGoogle Scholar
Rettke, R. C., 1981 Probable burial diagenesis and provenance effects on Dakota Group clay mineralogy, Denver basin J. Sedim. Petrol 51 541551.Google Scholar
Reynolds, R. C., 1968 The effect of particle size on apparent lattice spacings Acta Crystallogr A24 319320.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R. C., 1986 The Lorentz-polarization factor and preferred orientation in oriented clay aggregates Clays & Clay Minerals 34 359367.CrossRefGoogle Scholar
Ross, M., 1968 X-ray diffraction effects by non-ideal crystals of biotite, muscovite, montmorillonite, mixed-layer clays, graphite, and periclase Z. Kristallogr 126 8097.CrossRefGoogle Scholar
Srodon, J., 1980 Precise identification of illite/smectite interstratification by X-ray powder diffraction Clays & Clay Minerals 28 401411.CrossRefGoogle Scholar
Srodon, J., 1981 X-ray identification of randomly interstratified illite-smectites in mixtures with discrete illite Clay Miner 16 297304.CrossRefGoogle Scholar
Srodon, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D. and Karlinger, M. R., 1986 Chemistry of illite/smectite and end-member illite Clays & Clay Minerals 34 368378.CrossRefGoogle Scholar
Sudo, T., 1985 Illite-montmorillonite mixed-layer minerals in the sample from Niigata and Hokkaido Oil Wells—Mineralogical analysis and its application to the study of diagenesis Sekyushigen Techn. Inst. Rept 2 1431.Google Scholar
Tettenhorst, R. and Roberson, H. E., 1973 X-ray diffraction aspects of montmorillonites Amer. Mineral 58 7380.Google Scholar
Velde, B. and Brusewitz, A. M., 1986 Compositional variation in component layers in natural illite/smectite Clays & Clay Minerals 34 651657.CrossRefGoogle Scholar
Watanabe, T., 1981 Identification ofillite/montmorillonite interstratifications by X-ray powder diffraction J. Miner. Soc. Jpn. Spec. Issue 15 3241.Google Scholar
Watanabe, T., 1988 The structural model of illite/smectite interstratified minerals and the diagram for its identification Clay Sci 7 97114.Google Scholar
Weir, A. H., Nixon, H. L., Woods, R. D. and Swineford, A., 1962 Measurement of thickness of dispersed clay flakes Proc. 9th Natl. Conf., West Lafayette, Indiana, 1960 New York Pergamon Press 419423.Google Scholar
Weir, A. H., Ormerod, E. G. and El Mansey, I. M. I., 1975 Clay mineralogy of sediments of the western Nile Delta Clay Miner 10 369386.CrossRefGoogle Scholar