Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T12:54:58.628Z Has data issue: false hasContentIssue false

A Density Functional Theory (DFT) Investigation of Sulfur-Based Adsorbate Interactions on Alumina and Calcite Surfaces

Published online by Cambridge University Press:  01 January 2024

Stanley Ou
Affiliation:
Montgomery Blair High School, Silver Spring, MD 20901, USA Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
Jessica E. Heimann
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
Joseph W. Bennett*
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA

Abstract

With fossil-fuel consumption at an all-time high, air pollution is becoming one of the most prominent problems of the 21st century. In addition to their devastating effects on the environment, sulfur-based pollutants are problematic for infrastructure by undermining the structural stability of various oxide-based surfaces found in clays and clay minerals. Calcite (CaCO3) and alumina (α-Al2O3) are two such mineral oxides with surfaces that are potentially susceptible to damage by sulfur-based adsorbates. Their surface interactions with a wide range of sulfur-based pollutants, however, have yet to be studied adequately at the atomistic level. This problem can be addressed by utilizing density functional theory (DFT) to provide molecular-level insights into the adsorption effects of H2S, SO2, SO3, H2SO3, and H2SO4 molecules on calcite and alumina surfaces. DFT can be used to compare different types of adsorption events and their corresponding changes in the geometry and coordination of the adsorbates, as well as delineate any possible mineral-surface reconstructions. The hypothesis driving this comparative study was that the mineral-oxide surface structure will dictate the surface adsorption reactivity, i.e. the flat carbonate unit in calcite will behave differently from the Al–O octahedra in alumina under both vacuum and hydrated surface conditions. The set of sulfur-based adsorbates tested here exhibited a wide range of interactions with alumina and fewer with calcite surfaces. Events such as hydrogen bonding, sulfate formation, atom abstraction, and the formation of surface water groups were more prevalent in alumina than calcite and were found to be dependent on the surface termination. The results of this work will prove instrumental in the design of clay and mineral-based materials resilient to sulfur-based pollutants for use in construction and infrastructure such as smart building coatings and antifouling desalination membranes, as DFT methods can garner the atomistic insights into mineral-surface reactivity necessary to unlock these transformative technologies.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbaspour-Tamijani, A., Bjorklund, J. L., Augustine, L. J., Catalano, J. G., & Mason, S. E. (2020). Density functional theory and thermodynamics modeling of inner-sphere oxyanion adsorption on the hydroxylated alpha-Al2O3 (001) Surface. Langmuir, 36(44), 1316613180.CrossRefGoogle Scholar
Baltrusaitis, J., Cwiertny, D. M., & Grassian, V. H. (2007). Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Physical Chemistry Chemical Physics, 9(41), 5542. https://doi.org/10.1039/b709167bCrossRefGoogle ScholarPubMed
Baltrusaitis, J., Jayaweera, P. M., & Grassian, V. H. (2010). Sulfur dioxide adsorption on TiO2 nanoparticles: Influence of particle size, co-adsorbates, sample pretreatment, and light on SURFACE speciation and surface coverage. The Journal of Physical Chemistry C, 115(2), 492500.CrossRefGoogle Scholar
Bennett, J. W., Bjorklund, J. L., Forbes, T. Z., & Mason, S. E. (2017). Systematic study of aluminum nanoclusters and anion adsorbates. Inorganic Chemistry, 56, 1301413028.CrossRefGoogle ScholarPubMed
Bennett, J. W., Jones, D., Huang, X., Hamers, R. J., & Mason, S. E. (2018). Dissolution of complex metal oxides from firstprinciples and thermodynamics: Cation removal from the (001) surface of Li(Ni1/3Mn1/3Co1/3)O2. Environmental Science & Technology, 52(10), 57925802.CrossRefGoogle Scholar
Bennett, J. W., Jones, D. T., Hudson, B. G., Melendez-Rivera, J., Hamers, R. J., & Mason, S. E. (2020). First-principles and thermodynamics comparison of compositionally-tuned delafossites: Cation release from the (001) surface of complex metal oxides. Environmental Science: Nano, 7, 16421651.Google Scholar
Bjorklund, J. L., Bennett, J. W., Forbes, T. Z., & Mason, S. E. (2019). Modeling of MAl12 Keggin heteroatom reactivity by anion adsorption. Crystal Growth & Design, 19, 28202829.CrossRefGoogle Scholar
Bravo, A. H., Soto, A. R., Sosa, E. R., Sanchez, A. P., Alarcon, J. A. L., Kahl, J., & Ruiz, B. J. (2006). Effect of acid rain on building material of the El Tajin archaeological zone in Veracruz, Mexico. Environmental Pollution, 144, 655660.CrossRefGoogle Scholar
Breedon, M., Spencer, M. J., & Yarovsky, I. (2010). Adsorption of NO2 on oxygen deficient ZnO(2110) for Gas Sensing Applications: A DFT study. The Journal of Physical Chemistry C, 114(39), 1660316610. https://doi.org/10.1021/jp105733pCrossRefGoogle Scholar
Bridges, A., Felder, F. A., McKelvey, K., & Niyogi, I. (2015). Uncertainty in energy planning: Estimating the health impacts of air pollution from fossil fuel electricity generation. Energy Research & Social Science, 6, 7477.CrossRefGoogle Scholar
Burke, K. (2012). Perspective on density functional theory. The Journal of Chemical Physics, 136(15), 150901. https://doi.org/10.1063/1.4704546CrossRefGoogle Scholar
Chessin, H., Hamilton, W. C., & Post, B. (1965). Position and thermal parameters of oxygen atoms in calcite. Acta Crystallographica, 18, 689693.CrossRefGoogle Scholar
Chong, T. H., & Sheikholeslami, R. (2001). Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation. Chemical Engineering Science, 56, 53915400.CrossRefGoogle Scholar
Coccato, A., Moens, L., & Vandenabeele, P. (2017). On the Stability of Mediaeval Inorganic Pigments: A Literature Review of the Effect of Climate, Material Selection, Biological Activity, Analysis and Conservation Treatments. Heritage Science, 5(1), 12.CrossRefGoogle Scholar
Corum, K. W., Huang, X., Bennett, J. W., & Mason, S. E. (2017). Systematic Density Functional Theory Study of the Structural and Electronic Properties of Constrained and Fully Relaxed (001) Surfaces of Alumina and Hematite. Molecular Simulation, 43(5-6), 406419.CrossRefGoogle Scholar
Cubillas, P., Kohler, S., Prieto, M., Chairat, C., & Oelkers, E. H. (2005). Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chemical Geology, 216, 5977.CrossRefGoogle Scholar
Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33, 48774900.CrossRefGoogle Scholar
Fenter, P., Kerisit, S., Raiteri, P., & Gale, J. D. (2013). Is the Calcite-Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Data. The Journal of Physical Chemistry C., 117, 50285042.Google Scholar
Galloway, B. D., Sasmaz, E., & Padak, B. (2015). Binding of SO3 to fly ASH components: CaO, MgO, Na2O and K2O. Fuel, 145, 7983. https://doi.org/10.1016/j.fuel.2014.12.046CrossRefGoogle Scholar
Garcia-Florentino, C., Maguregui, M., Carrero, J. A., Morillas, H., Arana, G., & Madariaga, J. M. (2020). Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. Journal of Cleaner Production, 268, 122134–121-10.CrossRefGoogle Scholar
Garrity, K. F., Bennett, J. W., Rabe, K. M., & Vanderbilt, D. (2014). Pseudopotentials for High-Throughput DFT Calculations. Computational Materials Science, 81, 446452. https://doi.org/10.1016/j.commatsci.2013.08.053CrossRefGoogle Scholar
Gettens, R. J., Fitzhugh, E. W., & Feller, R. L. (1974). Calcium Carbonate Whites. Studies in Conservation, 19(3), 157184.Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., ... Wentzcovitch, R. M. (2009). Quantum Espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502Google ScholarPubMed
Graue, B., Siegesmund, O. P., Naumann, R., Licha, T., & Simon, K. (2013). The effect of air pollution on stone decay: The decay of the Drachenfels trachyte in industrial, urban, and rural environments – A case study of the Cologne, Altenberg and Xanten cathedrals. Environmental Earth Sciences, 69, 10951124.CrossRefGoogle Scholar
Grimes, R. T., Leginze, J. A., Zochowski, R., & Bennett, J. W. (2021). Surface transformations of lead oxides and carbonates using first-principles and thermodynamics calculations. Inorganic Chemistry, 60(2), 12281240. https://doi.org/10.1021/acs.inorgchem.0c03398CrossRefGoogle ScholarPubMed
Gulia, S., Shiva Nagendra, S. M., Khare, M., & Khanna, I. (2015). Urban air quality management – A review. Atmospheric Pollution Research, 6, 286304.CrossRefGoogle Scholar
Gunasekaran, S., & Anbalagan, G. (2007). Spectroscopic characterization of natural calcite minerals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(3), 656664. https://doi.org/10.1016/j.saa.2006.12.043CrossRefGoogle ScholarPubMed
He, K., Song, Q., Yan, Z., & Yao, Q. (2020). SO3 removal from flue gas by using Na2SO3. Energy & Fuels, 34(6), 72327241. https://doi.org/10.1021/acs.energyfuels.0c00476CrossRefGoogle Scholar
He, K., Song, Q., Yan, Z., Zheng, N., & Yao, Q. (2019). Study on competitive absorption of SO3 and SO2 by calcium hydroxide. Fuel, 242, 355361. https://doi.org/10.1016/j.fuel.2019.01.046CrossRefGoogle Scholar
Heimann, J. E., Grimes, R. T., Rosenzweig, Z., & Bennett, J. W. (2021). A density functional theory (DFT) investigation of how small molecules and atmospheric pollutants relevant to art conservation adsorb on kaolinite. Applied Clay Science, 206, 106075. https://doi.org/10.1016/j.clay.2021.106075CrossRefGoogle Scholar
Hellenbrandt, M. (2004). The Inorganic Crystal Structure Database (ICSD) – present and future. Crystallography Reviews, 10(1), 1722. https://doi.org/10.1080/08893110410001664882CrossRefGoogle Scholar
Hosseinabad, E. R., & Moraga, R. J. (2017). A system dynamics approach in air pollution mitigation of metropolitan areas with sustainable development perspective: A case study of Mexico City. Journal of Applied Environmental and Biological Sciences, 7(12), 164174.Google Scholar
Huang, X., Bennett, J. W., Hang, M. N., Laudadio, E. D., Hamers, R. J., & Mason, S. E. (2017). Ab initio atomistic thermodynamics study of the (001) surface of LiCoO2 in a water environment and implications for reactivity under ambient conditions. The Journal of Physical Chemistry C, 121(9), 50695080. https://doi.org/10.1021/acs.jpcc.6b12163CrossRefGoogle Scholar
Iftimie, R., Minary, P., & Tuckerman, M. E. (2005). Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proceedings of the National Academy of Sciences, 102(19), 66546659.CrossRefGoogle ScholarPubMed
Klampt, A., & Schuurmann, G. (1993). COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, 2(5), 799805.CrossRefGoogle Scholar
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A). https://doi.org/10.1103/physrev.140.a1133CrossRefGoogle Scholar
Kokalj, A. (1999). XcrySDen—a new program for displaying crystalline structures and electron densities. Journal of Molecular Graphics and Modelling, 17(3-4), 176179. https://doi.org/10.1016/s1093-3263(99)00028-5CrossRefGoogle ScholarPubMed
Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47, 558I.Google ScholarPubMed
Lea, A. S., Amonette, J. E., Baer, D. R., Liang, Y., & Colton, N. G. (2001). Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution. Geochimica et Cosmochimica Acta, 65(3), 369379.CrossRefGoogle Scholar
Lim, C. C., Kim, H., Ruzmyn Vilcassim, M. J., Thurston, G. D., Gordon, T., Chen, L.-C., Lee, K., Heimbinder, M., & Kim, S.Y. (2019). Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea. Environment International, 131, 105022–101-10.CrossRefGoogle ScholarPubMed
Liu, D., Jin, Y., & Deng, J. (2009). Ab initio calculations of the relationship between the alpha alumina toughness and its electronic structure under pressure. Computational Materials Science, 45(2), 310314. https://doi.org/10.1016/j.commatsci.2008.10.002CrossRefGoogle Scholar
Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies, 12, 964–1-11.CrossRefGoogle Scholar
Mason, S. E., Iceman, C. R., Trainor, T. P., & Chaka, A. M. (2010). Density functional theory study of clean, hydrated, and defective alumina (11\bar02) surfaces. Physical Review B, 81, 125423–121-16.Google Scholar
Mayorga, I. C., Astilleros, J. M., Fernando-Diaz, L., Morales, J., Prieto, M., Roncal-Herrero, T., & Benning, L. G. (2018). Epitactic Overgrowths of Calcite (CaCO3) on Anhydrite (CaSO4) Cleavage Surfaces. Crystal Growth & Design, 18, 16661675.CrossRefGoogle Scholar
Perera, F. P. (2017). Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environmental Health Perspectives, 125(2), 141148.CrossRefGoogle ScholarPubMed
Rodriguez, J. A., Jirsak, T., Freitag, A., Larese, J. Z., & Maiti, A. (2000). Interaction of SO2 with MgO (100) and Cu/Mg (100): Decomposition reactions and formation of SO3 and SO4. The Journal of Physical Chemistry B, 104, 74397448.CrossRefGoogle Scholar
Rong, X., & Kolpak, A. M. (2015). Ab initio approach for prediction of oxide surface structure, stoichiometry, and electrocatalytic activity in aqueous solution. Journal of Physical Chemistry Letters., 6(9), 17851789.CrossRefGoogle ScholarPubMed
Schneider, W. F., Li, J., & Hass, K. C. (2001). Combined computational and experimental investigation of SOx Adsorption on MgO. The Journal of Physical Chemistry B, 105, 69726979.CrossRefGoogle Scholar
Shannon, R. D., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 25(5), 925946. https://doi.org/10.1107/s0567740869003220CrossRefGoogle Scholar
Sheikholeslami, R., & Ng, M. (2001). Calcium sulfate precipitation in the prescence of nondominant calcium carbonate: Thermodynamics and kinetics. Industrial & Engineering Chemistry Research, 40, 35703578.CrossRefGoogle Scholar
Smirnov, M. Y., Kalinin, A. V., Pashis, A. V., Sorokin, A. M., Noskov, A. S., Kharas, K. C., & Bukhtiyarov, V. I. (2005). Interaction of Al2O3 and CeO2 surfaces with SO2 and SO2 + O2 Studied by X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry B., 109, 1171211719.CrossRefGoogle ScholarPubMed
Summers, J. C. (1979). Reaction of sulfur oxides with alumina and platinum/alumina. Environmental Science & Technology, 13(3), 341345.CrossRefGoogle Scholar
Toebbens, D. M., Stuessaer, N., Knorr, K., Mayer, H. M., & Lampert, G. (2001). The new high-resolution neutron powder diffractometer at the Berlin neutron scattering center. Materials Science Forum., 378, 288293. https://doi.org/10.4028/www.scientific.net/MSF.378-381.288CrossRefGoogle Scholar
Torres, E., Lozano, A., Macias, F., Gomez-Arias, A., & Castillo, J. (2018). Passive elimination of sulfate and metals from acid mine drainage using combined limestone and barium carbonate systems. Journal of Cleaner Production, 182, 114123.CrossRefGoogle Scholar
Warsinger, D. M., Swaminathan, J., Guillen-Burrieza, E., Arafat, H. A., & Lienhard, J. H. (2015). Scaling and fouling in membrance distillation for desalination applications: A review. Desalination, 356, 294313.CrossRefGoogle Scholar
Weijing, D., Weihong, Z., Xiaodong, Z., Baofeng, Z., Lei, C., Laizhi, S., Shuangxia, Y., Haibin, G., Guanyi, C., Liang, Z., & Ge, S. (2018). The application of DFT in catalysis and adsorption reaction system. Energy Procedia, 152, 9971002. https://doi.org/10.1016/j.egypro.2018.09.106CrossRefGoogle Scholar
Wilkins, R. G. (1991). Kinetics and Mechanism of Reactions of Transition Metal Complexes. Allyn & Bacon, Inc.CrossRefGoogle Scholar
Wu, Z., & Cohen, R. E. (2006). More accurate generalized gradient approximation for solids. Physical Review B, 73(23). https://doi.org/10.1103/physrevb.73.235116CrossRefGoogle Scholar
Yao, L., Fan, X., Yan, C., Kurtén, T., Daellenbach, K. R., Li, C., Wang, Y., Guo, Y., Dada, L., Rissanen, M. P., Cai, J., Tham, Y. J., Zha, Q., Zhang, S., Du, W., Yu, M., Zheng, F., Zhou, Y., Kontkanen, J., ... Bianchi, F. (2020). Unprecedented ambient sulfur trioxide (SO3) detection: Possible formation mechanism and atmospheric implications. Environmental Science & Technology Letters, 7(11), 809818. https://doi.org/10.1021/acs.estlett.0c00615CrossRefGoogle ScholarPubMed
Zeebe, R. E., Zachos, J. C., Caldeira, K., & Tyrell, T. (2008). Carbon Emissions and Acidification. Science, 321, 5152.CrossRefGoogle ScholarPubMed
Zhang, Y., Tong, S., Ge, M., Jing, B., Hou, S., Tan, F., Chen, Y., Guo, Y., & Wu, L. (2018). The formation and growth of calcium sulfate crystals through oxidation of SO2 by O3 on size-resolved calcium carbonate. The Royal Society of Chemistry Advances, 8, 16285.Google ScholarPubMed
Zheng, C., Wang, Y., Liu, Y., Yang, Z., Qu, R., Ye, D., Liang, C., Liu, S., & Gao, X. (2019). Formation, transformation, measurement, and control of SO3 in coal-fired power plants. Fuel, 241, 327346.CrossRefGoogle Scholar
Supplementary material: File

Ou et al. supplementary material
Download undefined(File)
File 25.3 MB