Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-28T22:16:04.544Z Has data issue: false hasContentIssue false

Distribution and Fractionation of Rare Earth Elements (REE) in the Ion Adsorption-type REE Deposit (IAD) at Maofeng Mountain, Guangzhou, China

Published online by Cambridge University Press:  01 January 2024

Yuanyuan Wang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Liu Liu
Affiliation:
Guangdong Nonferrous Metal Geological Exploration Institute, Guangzhou 510000, China
Mingqi Sun
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Jian Huang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Yufeng Huang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Xiaoliang Liang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Wei Tan
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Hongping He
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Jianxi Zhu*
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
*

Abstract

Ion adsorption-type rare earth deposits (IADs) are developed via prolonged weathering of REE-rich volcanic and metamorphic rocks. Intense magmatic activity which occurred during the Yanshanian (199.6–65.5 Ma) and Caledonian periods (542–359.2 Ma) provided an abundant material basis for the formation of IADs in South China. High concentrations of REE and the high proportion of ion-exchangeable REE were found in the Maofeng Mountain regolith, Guangzhou city. However, the geochemical patterns and mechanisms of REE enrichment in the regolith were still poorly understood. The present study investigated the regolith profile (0–8 m) developed in Maofeng Mountain based on metallogenic and geochemical characteristics, sequential extraction, and physical and chemical parameters of the regolith profile. The bedrock contained abundant REE resources (245–287 mg kg–1) and the chondrite-normalized REE patterns showed the enrichment of light REE (LREE) and negative cerium (Ce) and europium (Eu) anomalies. The distribution patterns of REE in the bedrock were inherited by the regolith. REE enrichment of the regolith occurred mainly in the completely weathered layer (B1, B2, and B3 horizons), particularly in the depth range 2.5–4.5 m (849–2391 mg kg–1). The position of REE enrichment was controlled by the soil pH (5.52–6.02), by the amount of kaolinite and halloysite, and by the permeability of the metamorphic rock. In the REE-enriched horizon (2–8 m), the REE were hosted mainly in ion-exchangeable fractions (75–2158 mg kg–1), representing 79% of the total REE. Given the pH of 4.73–6.02, REE fractionation driven by the adsorption of kaolinite was limited. Fe–Mn (oxyhydr)oxides played an important role in REE enrichment and the reducible fraction holds up to 21% (139 mg kg–1) of the total REE. The enrichment of LREE was observed in the reducible fraction potentially because of the preferential release of LREE from the LREE-bearing minerals (monazite) and then scavenged by Fe–Mn (oxyhydr)oxides. Positive Ce anomalies (Ce/Ce*: 10) were found in the reducible fraction because trivalent Ce was oxidized by Fe–Mn (oxyhydr)oxides to cerianite (CeO2). The present study helps to understand the enrichment and fractionation of REE in the IADs of South China.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, D., Stille, P., & Probst, A. (2001). REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65(3), 387–406. https://doi.org/10.1016/S0016-7037(00)00546-9CrossRefGoogle Scholar
Bai, G., Wu, C., Ding, X., Yuan, Z., Huang, D., & Wang, P. (1989). Genesis and spatial distribution of ion-adsorption type REE deposits in Nanling region. Beijing: Institute of Ore Deposit Geology, 1–105.Google Scholar
Balaram, V.Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact Geoscience Frontiers 2019 10 41285130310.1016/j.gsf.2018.12.005CrossRefGoogle Scholar
Bao, Z.A geochemical study of the granitoid weathering crust in Southeast China Geochimica 1992 21 216617410.3321/j.issn:0379-1726.1992.02.008Google Scholar
Bao, Z.Zhao, Z.Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China Ore Geology Reviews 2008 33 351953510.1016/j.oregeorev.2007.03.005CrossRefGoogle Scholar
Bao., Z. W., & Zhao., Z. H. (2003). Geochemistry and formation environment of Fogang aluminaceous A-type granite. Geology and Geochemistry, 31(1). https://qikan-cqvip-com.webvpn.las.ac.cn/Qikan/Article/Detail?id=7661280Google Scholar
Barrón, V., & Torrent. J. (2013). Iron, manganese and aluminium oxides and oxyhydroxides. European Mineralogical Union Notes in Mineralogy, 14, 297–336. https://doi.org/10.1180/EMU-notes.14.9CrossRefGoogle Scholar
Berger, A.Janots, E.Gnos, E.Frei, R.Bernier, F.Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar Applied Geochemistry 2014 41 21822810.1016/j.apgeochem.2013.12.013CrossRefGoogle Scholar
Borst, A. M.Smith, M. P.Finch, A. A.Estrade, G.Villanova-de-Benavent, C.Nason, P.Geraki, K.Adsorption of rare earth elements in regolith-hosted clay deposits Nature Communications 2020 11 1438610.1038/s41467-020-17801-5CrossRefGoogle ScholarPubMed
Cheshire, M. C.Bish, D. L.Cahill, J. F.Kertesz, V.Stack, A. G.Geochemical Evidence for Rare-Earth Element Mobilization during Kaolin Diagenesis ACS Earth and Space Chemistry 2018 2 550652010.1021/acsearthspacechem.7b00124CrossRefGoogle Scholar
Chi, R.Tian, J.Review of weathered crust rare earth ore [Article] Journal of the Chinese Rare Earth Society 2007 25 6641650Google Scholar
Chi, R.Tian, J.Li, Z.Peng, C.Wu, Y.Li, S.Zhou, Z.Existing state and partitioning of rare earth on weathered ores [Article] Journal of Rare Earths 2005 23 675675910.3321/j.issn:1000-4343.2007.06.001Google Scholar
Coppin, F.Berger, G.Bauer, A.Castet, S.Loubet, M.Sorption of lanthanides on smectite and kaolinite Chemical Geology 2002 182 1576810.1016/S0009-2541(01)00283-2CrossRefGoogle Scholar
Dardenne, K.Schäfer, T.Lindqvist-Reis, P.Denecke, M. A.Plaschke, M.Rothe, J.Kim, J. I.Low temperature XAFS investigation on the Lutetium binding changes during the 2-line ferrihydrite alteration process [Article] Environmental Science and Technology 2002 36 235092509910.1021/es025513fCrossRefGoogle ScholarPubMed
Deng, X-DLi, J-WVasconcelos, P. M.Cohen, B. E.Kusky, T. M.Geochronology of the Baye Mn oxide deposit, southern Yunnan Plateau: Implications for the late Miocene to Pleistocene paleoclimatic conditions and topographic evolution Geochimica et Cosmochimica Acta 2014 139 22724710.1016/j.gca.2014.04.036CrossRefGoogle Scholar
Deng, X. F.Application of soil pH for exploration of granite-derived ion adsorption type REE deposits [Article] Geology-Geochemistry 1985 2 7276Google Scholar
Fu, W.Li, X.Feng, Y.Feng, M.Peng, Z.Yu, H.Lin, H.Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology Chemical Geology 2019 520 335110.1016/j.chemgeo.2019.05.006CrossRefGoogle Scholar
Fu, W., Luo, P., Hu, Z. Y., Feng, Y. Y., Liu, L., Yang, J. B., Zhou, Y. Z. (2019b). Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: Genetic mechanism and formation preference. Ore Geology Reviews, 114. 10312010.1016/j.oregeorev.2019b.103120CrossRefGoogle Scholar
Gu, Y-GGao, Y-PLin, Q.Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou Applied Geochemistry 2016 67 525810.1016/j.apgeochem.2016.02.004CrossRefGoogle Scholar
Guangdong Bureau of Geology and Mineral Resources. (1988). Regional geology of Guangdong Province. Geological Publishing House.Google Scholar
Hoskin, PWOSchaltegger, U.The composition of zircon and igneous and metamorphic petrogenesis Reviews in Mineralogy and Geochemistry 2003 53 1276210.2113/0530027CrossRefGoogle Scholar
Hua., R. M., Zhang., W. L., Chen., P. R., Zhai., W., & Li., G. L. (2013). Relationship between Caledonian Granitoids and large-scale mineralization in South China. Geological Journal of China Universities(1), 1–11. https://qikan-cqvip-com.webvpn.las.ac.cn/Qikan/Article/Detail?id=45282032Google Scholar
Huang, J., He, H., Tan, W., Liang, X., Ma, L., Wang, Y., Zhu, J. (2021a). Groundwater controls REE mineralisation in the regolith of South China. Chemical Geology, 577, 120295. https://doi.org/10.1016/j.chemgeo.2021.120295CrossRefGoogle Scholar
Huang, J., Tan, W., Liang, X., He, H., Ma, L., Bao, Z., & Zhu, J. (2021b). REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province. South China. Ore Geology Reviews, 134, 104172. https://doi.org/10.1016/j.oregeorev.2021.104172CrossRefGoogle Scholar
Huang, Y.He, H.Liang, X.Bao, Z.Tan, W.Ma, L.Wang, H.Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou China. Ore Geology Reviews 2021 135 10417310.1016/j.oregeorev.2021.104173CrossRefGoogle Scholar
Kosmulski, M.pH-dependent surface charging and points of zero charge. IV. Update and new approach Journal of Colloid and Interface Science 2009 337 243944810.1016/j.jcis.2009.04.072CrossRefGoogle ScholarPubMed
Kynicky, J.Smith, M. P.Xu, C.Diversity of rare earth deposits: The key example of China Elements 2012 8 536136710.2113/gselements.8.5.361CrossRefGoogle Scholar
Lara, M. C.Buss, H. L.Pett-Ridge, J. C.The effects of lithology on trace element and REE behavior during tropical weathering Chemical Geology 2018 500 8810210.1016/j.chemgeo.2018.09.024CrossRefGoogle Scholar
Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154(1–2), 1–12. https://doi.org/10.1016/J.GEODERMA.2009.10.002CrossRefGoogle Scholar
Li, MYHZhou, M-FWilliams-Jones, A. E.The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province South China Economic Geology 2019 114 354156810.5382/econgeo.4642CrossRefGoogle Scholar
Li, MYHZhou, M-FWilliams-Jones, A. E.Controls on the Dynamics of Rare Earth Elements During Subtropical Hillslope Processes and Formation of Regolith-Hosted Deposits Economic Geology 2020 115 51097111810.5382/econgeo.4727CrossRefGoogle Scholar
Li, MYHZhou, M. F.The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits American Mineralogist 2020 105 19210810.2138/am-2020-7061CrossRefGoogle Scholar
Li, YHMZhao, W. W.Zhou, M. F.Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model Journal of Asian Earth Sciences 2017 148 659510.1016/j.jseaes.2017.08.004CrossRefGoogle Scholar
Ling., H. F., Shen., W. Z., Sun., T., Jiang., S. Y., Jiang., Y. H., Ni., P., Tan., Z. Z. (2006). Genesis and source characteristics of 22 Yanshanian granites in Guangdong province: Study of element and Nd-Sr isotopes. Acta Petrologica Sinica, 22(11), 2687–2703. CNKI:SUN:YSXB.0.2006-11-006.Google Scholar
Liu, H.Pourret, O.Guo, H.Bonhoure, J.Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater Applied Geochemistry 2017 87 15816610.1016/j.apgeochem.2017.10.020CrossRefGoogle Scholar
Liu, R. S., Qiang Li, Min Gong, Dongfeng Zou, Xiangliang Miao, & Liu, X. (2014). The new resources prospect of ion adsorption type rare earth resources in metamorphic rock’s weathering crust, South Jiangxi. Advances in Geosciences, 4(6). https://qikan-cqvip-com.webvpn.las.ac.cn/Qikan/Article/Detail?id=HS723862014006009Google Scholar
Liu, W.Liu, C.Brantley, S. L.Xu, Z.Zhao, T.Liu, T.Gu, X.Deep weathering along a granite ridgeline in a subtropical climate Chemical Geology 2016 427 173410.1016/j.chemgeo.2016.02.014CrossRefGoogle Scholar
Liu, J. F.Song, Z. G.Xu, T.Study on ionic composition of rainwater at Guangzhou and the primary Factors of rainwater acidity Environment Science 2006 27 101998200210.3321/j.issn:0250-3301.2006.10.013Google Scholar
Liu., J. P. (2007). A study on the denudation rate for the southern slope of the Nanling mountains, China [Master, South China Normal University].Google Scholar
Lybrand, R. A.Rasmussen, C.Linking soil element-mass-transfer to microscale mineral weathering across a semiarid environmental gradient Chemical Geology 2014 381 263910.1016/j.chemgeo.2014.04.022CrossRefGoogle Scholar
Ma, J-LWei, G-JXu, Y-GLong, W-GSun, W-DMobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island South China. Geochimica et Cosmochimica Acta 2007 71 133223323710.1016/j.gca.2007.03.035CrossRefGoogle Scholar
McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4CrossRefGoogle Scholar
Nesbitt, H. W.Young, G. M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites Nature 1982 299 588571571710.1038/299715a0CrossRefGoogle Scholar
Pei, Q. M.Liu, T. Q.Yuan, H. Q.Cao, H. W.Li, S. H.Hu, X. K.Geochemical characteristics of trace elements of ion adsorption type rare earth elements deposit in Guposhan region, Guangxi, China [Article] Journal of Chengdu University of Technology (science and Technology Edition) 2015 42 445146210.3969/j.issn.1671-9727.2015.04.09Google Scholar
Pourret, O.Davranche, M.Gruau, G.Dia, A.Rare earth elements complexation with humic acid Chemical Geology 2007 243 1–212814110.1016/j.chemgeo.2007.05.018CrossRefGoogle Scholar
Quinn, K. A.Byrne, R. H.Schijf, J.Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of pH and ionic strength Marine Chemistry 2006 99 112815010.1016/j.marchem.2005.05.011CrossRefGoogle Scholar
RiesgoGarcía, M. V.Krzemień, A.Manzanedo del Campo, Menéndez Álvarez, M.Gent, M. R.Rare earth elements mining investment: It is not all about China Resources Policy 2017 53 667610.1016/j.resourpol.2017.05.004CrossRefGoogle Scholar
Sanematsu, K.Ejima, T.Kon, Y.Manaka, T.Zaw, K.Morita, S.Seo, Y.Fractionation of rare-earth elements during magmatic differentiation and weathering of calc-alkaline granites in southern Myanmar Mineralogical Magazine 2018 80 17710210.1180/minmag.2016.080.053CrossRefGoogle Scholar
Sanematsu, K.Kon, Y.Imai, A.Influence of phosphate on mobility and adsorption of REE during weathering of granites in Thailand Journal of Asian Earth Sciences 2015 111 143010.1016/j.jseaes.2015.05.018CrossRefGoogle Scholar
Sanematsu, K.Watanabe, K.Characteristics and genesis of ion adsorption-type rare earth element deposits [Article] Reviews in Economic Geology 2016 18 557910.5382/Rev.18.03Google Scholar
Shi, C.Yan, M.Liu, C.Chi, Q.Hu, S.Gu, T.Yan, W.Abundances of chemical elements in granitoids of China and their characteristics Geochimica 2005 34 547048210.19700/j.0379-1726.2005.05.005Google Scholar
Sinitsyn, V. A.Aja, S. U.Kulik, D. A.Wood, S. A.Acid–base surface chemistry and sorption of some lanthanides on K+-saturated Marblehead illite: I. results of an experimental investigation Geochimica et Cosmochimica Acta 2000 64 218519410.1016/S0016-7037(99)00175-1CrossRefGoogle Scholar
Sun, T.A new map showing the distribution of granites in South China and its explanatory notes Geological Bulletin of China 2006 25 333233410.3969/j.issn.1671-2552.2006.03.002Google Scholar
Takahashi, Y.Manceau, A.Geoffroy, N.Marcus, M. A.Usui, A.Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides Geochimica et Cosmochimica Acta 2007 71 4984100810.1016/j.gca.2006.11.016CrossRefGoogle Scholar
Tang, J.Johannesson, K. H.Ligand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters Geochimica et Cosmochimica Acta 2010 74 236690670510.1016/j.gca.2010.08.028CrossRefGoogle Scholar
Wang, D. H.Zhao, Z.Yu, Y.Zhao, T.Li, J. K.Dai, J. J.He, H. H.Progress, problems and research orientation of ion-adsorption type rare earth resources Rock and Mineral Analysis 2013 32 579680210.15898/j.cnki.11-2131/td.2013.05.005Google Scholar
Wang, S.Petrological characteristics, genetic types and tectonic dynamic setting of Caledonian granites in South China Journal of Green Science and Technology 2016 22 136137 https://qikan-cqvip-com.webvpn.las.ac.cn/Qikan/Article/Detail?id=670692787Google Scholar
Wang, Y., Wang, G., Sun, M., Liang, X., He, H., Zhu, J., & Takahashi, Y. (2022). Environmental risk assessment of the potential “Chemical Time Bomb” of ion-adsorption type rare earth elements in urban areas. Science of the Total Environment, 153305. https://doi.org/10.1016/j.scitotenv.2022.153305CrossRefGoogle Scholar
Warr, L. N.Recommended abbreviations for the names of clay minerals and associated phases Clay Minerals 2020 55 26126410.1180/clm.2020.30CrossRefGoogle Scholar
Warr, L. N.IMA-CNMNC approved mineral name symbols Mineralogical Magazine 2021 85 29132010.1180/mgm.2021.43CrossRefGoogle Scholar
White, A. F.Blum, A. E.Effects of climate on chemical weathering in watersheds Geochimica et Cosmochimica Acta 1995 59 91729174710.1016/0016-7037(95)00078-ECrossRefGoogle Scholar
Wood, S. A.The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters Chemical Geology 1990 82 15918610.1016/0009-2541(90)90080-QCrossRefGoogle Scholar
Wu, Y.Analysis of acid rain in Guangzhou from 1996 to 2005 Guangdong Science and Technology 2006 6 3435Google Scholar
Xiao, Y. H.Liu, Y. T.Xu, D. P.Li, J.Chen, D. X.Preliminary report on air environmental quality of Maofeng mountain in Guangzhou Journal of Chinese Urban Forestry 2004 2 34144Google Scholar
Xie, Y.Hou, Z.Goldfarb, R. J.Guo, X.Wang, L.Rare earth element deposits in China [Article] Reviews in Economic Geology 2016 18 115136Google Scholar
Yamaguchi, A.Tanaka, M.Kurihara, Y.Takahashi, Y.Local structure of strontium adsorbed on 2:1 clay minerals and its comparison with cesium by XAFS in terms of migration of their radioisotopes in the environment Journal of Radioanalytical and Nuclear Chemistry 2018 317 154555110.1007/s10967-018-5895-0CrossRefGoogle Scholar
Yang, D. H.Xiao, G. M.Regional metallogenic regularities of the ion adsorption type of rare-earth deposits in Guangdong Province Resource Geology 2011 20 6462468Google Scholar
Yang, H. Y.Wang, Z. C.Cheng, M.Zhang, M. Y.Analysis on acid rain observatory data in Guangzhou during 2008–2012 Journal of Meteorological Research and Application 2014 35 25256Google Scholar
Yang, M.Liang, X.Li, Y.He, H.Zhu, R.Arai, Y.Ferrihydrite Transformation Impacted by Adsorption and Structural Incorporation of Rare Earth Elements ACS Earth and Space Chemistry 2021 5 102768277710.1021/acsearthspacechem.1c00159CrossRefGoogle Scholar
Yang, M.Liang, X.Ma, L.Huang, J.He, H.Zhu, J.Adsorption of REE on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite Chemical Geology 2019 525 21021710.1016/j.chemgeo.2019.07.024CrossRefGoogle Scholar
Zhang, P. P.Zheng, Y. L.Guo, J.New progress in the study of Yanshan Tectonic Subphase Granite and its Magnatism in South China Energy Research and Management 2018 2 913Google Scholar
Zhang, Y.Qiu, W.Wang, W.On the geologic characteristics and genesis of the Wan'an REE deposit in Longyan city, Fujian province Geology of Fujian 2013 33 185191Google Scholar
Zhao, Z., Wang, D., Bagas, L., & Chen, Z. (2022). Geochemical and REE mineralogical characteristics of the Zhaibei Granite in Jiangxi Province, southern China, and a model for the genesis of ion-adsorption REE deposits. Ore Geology Reviews, 140. https://doi.org/10.1016/j.oregeorev.2021.104579CrossRefGoogle Scholar
Zhao, Z.Wang, D. H.Chen, Z. Y.Chen, Z. H.Zheng, G. D.Liu, X. X.Zircon U-Pb age, endogenic mineralization and petrogenesis of rare earth ore-bearing granite in Longnan, Jiangxi Province [Article] Acta Geoscientica Sinica 2014 35 671972510.3975/cagsb.2014.06.07Google Scholar
Zhou, M.-F., Li, M. Y. H., Liu, J., Li, X., & Wang, Z. (2020). The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting. Chinese Science Bulletin, 3809–3824. https://doi.org/10.1360/TB-2020-0350CrossRefGoogle Scholar
Zhu, X., Zhang, B., Ma, G., Pan, Z., Hu, Z., & Zhang, B. (2022). Mineralization of ion-adsorption type rare earth deposits in Western Yunnan, China. Ore Geology Reviews, 148. https://doi.org/10.1016/j.oregeorev.2022.104984CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material
Download undefined(File)
File 5.5 MB