Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-04T13:09:09.327Z Has data issue: false hasContentIssue false

The Effect of Dry Grinding on Antigorite from Mulhacen, Spain

Published online by Cambridge University Press:  28 February 2024

A. Drief
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada-C.S.I.C., Av. Fuentenueva s/n, 18002 Granada, Spain
F. Nieto
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada-C.S.I.C., Av. Fuentenueva s/n, 18002 Granada, Spain

Abstract

Alteration of the crystal structure of Mulhacén antigorite caused by dry, vibration grinding was investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analyses (TG), grain-size distribution, and transmission and analytical electron microscopy (TEM, AEM). Grinding for 1 min reduces particles to a size ideal for IR and TG. With prolonged grinding, XRD and electron diffraction patterns showed that the crystal structure was affected mainly along the c axis, causing a partial loss of crystallinity. TG analyses revealed that vibration grinding modified mineral dehydration, accelerating the dehydroxylation process and transforming the structural OH to adsorbed water in the resulting matrix. IR spectra and AEM showed that grinding affected the tetrahedral sheet to a lesser extent than the octahedral sheet. Partial release of Mg by preferential destruction of the octahedral sheet after 10 min grinding produced an increase in the Si/Mg ratio in semi-crystalline particles, whereas the amorphous material product after 120 min showed the same composition as the initial antigorite. TEM and grain-size distribution results revealed that grinding led to a general decrease in particle size at the beginning of the experiment followed by the agglomeration of ultrafine particles as grinding proceeded.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, EF P Lopez, J.M. and Pereira, E., 1986 Mech-anochemical effects in kaolinite grinding International Journal of Mineral Processing 16 125146 10.1016/0301-7516(86)90079-7.CrossRefGoogle Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., 1980 Structures of layer silicates Crystal Structure of Clay Minerals and Their X-ray Identification London Mineralogical Society 1123.Google Scholar
Caillère, S. Hénin, S. and Rautureau, M., 1982 Minéralogie des argiles: II. Classification et nomenclature Paris Masson.Google Scholar
Cícel, B. and Kranz, G., 1981 Mechanism of montmorillonite structure degradation by percussive grinding Clay Minerals 16 151162 10.1180/claymin.1981.016.2.03.CrossRefGoogle Scholar
Cornejo, J. and Hermosín, M.C., 1988 Structural alteration of sepiolite by dry grinding Clay Minerals 2 391398 10.1180/claymin.1988.023.4.06.CrossRefGoogle Scholar
González, GE R Abrio, M.T. and González, R.M., 1991 Effects of dry grinding on two kaolins of different degrees of crystallinity Clay Minerals 26 549565 10.1180/claymin.1991.026.4.09.CrossRefGoogle Scholar
Halavay, J. Jónás, K. Elek, S. and Inczédy, J., 1977 Characterisation of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods: I. Investigation of clay minerals Clays and Clay Minerals 25 451456 10.1346/CCMN.1977.0250611.CrossRefGoogle Scholar
Heller-Kallai, L. Yariv, S. and Gras, S., 1975 Hydroxyl stretching frequencies of serpentine minerals Mineralogical Magazine 40 197200 10.1180/minmag.1975.040.310.09.CrossRefGoogle Scholar
Henmi, T. and Yoshinaga, N., 1981 Alteration of imogolite by dry grinding Clay Minerals 16 139149 10.1180/claymin.1981.016.2.02.CrossRefGoogle Scholar
Juhász, A.Z., 1980 Mechano-chemical activation of kaolin minerals Acta Mineralogica-Petrographica 24 121145.Google Scholar
Kisch, H.J., 1991 Illite crystallinity: Recommendations on sample preparation, X-ray diffraction settings and interlaboratory samples Journal of Metamorphic Geology 9 665670 10.1111/j.1525-1314.1991.tb00556.x.CrossRefGoogle Scholar
Luce, R.W., 1971 Identification of serpentine varieties by infrared absorption US Geological Survey Professional Paper 750B 199201.Google Scholar
Nieto, F., 1997 Chemical composition of metapelitic chlo-rites: X-ray diffraction and optical property approach European Journal of Mineralogy 9 829841 10.1127/ejm/9/4/0829.CrossRefGoogle Scholar
Papirer, E. and Roland, P., 1981 Grinding of chrysotile in hydrocarbons, alcohol and water Clays and Clay Minerals 29 161170 10.1346/CCMN.1981.0290301.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Madrid, L. and Sánchez-Soto, P.J., 1988 Effects of dry grinding on pyrophyllite Clay Minerals 23 399410 10.1180/claymin.1988.023.4.07.CrossRefGoogle Scholar
Sánchez-Navas, A. Martín-Algarra, A. and Nieto, E., 1998 Bacterially-mediated authigenesis of clays in phosphate stromatolites Sedimentology 45 519533 10.1046/j.1365-3091.1998.00157.x.CrossRefGoogle Scholar
Viti, C., Dorset, D.L. Hovmöller, S. and Zoo, X.D., 1997 Electron diffraction patterns of natural antigorites: A still unknown modulated crystal structure Electron Crystallography The Netherlands Kluwer Academic Publishers 419422 10.1007/978-94-015-8971-0_46.CrossRefGoogle Scholar
Viti, C. and Meilini, M., 1996 Vein antigorites from Elba Island, Italy European Journal of Mineralogy 8 423434 10.1127/ejm/8/2/0423.CrossRefGoogle Scholar
Wilson, M.J., 1987 A Hand Book of Determinative Methods in Clay Mineralogy London Blackie.Google Scholar
Yada, K., 1979 Microstructures of chrysotile and antigorite by high resolution electron microscopy Canadian Mineralogist 17 679691.Google Scholar
Yariv, S. and Heller-Kallai, L., 1975 The relationship between the IR spectra of serpentines and their structures Clays and Clay Minerals 23 145152 10.1346/CCMN.1975.0230210.CrossRefGoogle Scholar