Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T22:24:42.221Z Has data issue: false hasContentIssue false

Effect of temperature on the synthesis of g-C3N4/montmorillonite and its visible-light photocatalytic properties

Published online by Cambridge University Press:  01 January 2024

Yao Li
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Hongjuan Sun*
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Tongjiang Peng
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Xiao Qing
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Graphite phase carbon nitride (g-C3N4) is a non-metal semiconductor material with a suitable band gap (2.7 eV) for visible photocatalysis. However, the high cost of relevant synthesis methods and poor adsorption performance have limited its practical applications. The objective of the present study was to mitigate these problems by synthesizing the g-C3N4 in the presence of exfoliated montmorillonite (Mnt). Compared with bulk montmorillonite, the specific surface area of exfoliated two-dimensional Mnt layers was significantly increased. As a result, the light transmittance of the lamella improved noticeably due to the fact that a freshly exposed surface had a large number of active reaction sites, making Mnt an excellent carrier for the photocatalyst g-C3N4. In order to improve the photocatalytic performance of g-C3N4, a series of g-C3N4/Mnt composites was prepared by a wet chemical method using Mnt nanolayers as the matrix. X-ray diffraction, infrared spectroscopy, Brunauer-Emmett-Teller nitrogen adsorption/desorption, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy were used to analyze the phase structure, the chemical bonds, the specific surface area and pore sizes, the morphology, and the light absorption characteristics of the composites, respectively. Rhodamine B (RhB) served as the target dye to test the photocatalytic degradation performance of the composites under visible light. According to the findings, the surface of the Mnt nanolayers was densely and uniformly covered by g-C3N4, forming a multi-layered stack structure. An increase of the calcination temperature improved the crystallinity of g-C3N4, leading first to densification and then to relaxation of the layered composite structure. Conversely, the band gap of the composite gradually decreased from 2.56 to 2.4 eV. Furthermore, temperature exposure changed the photocatalytic performance of the composite drastically. While the largest photocatalytic activity was observed at 610°C, it started to decrease with further heating of the composite. The complete degradation of RhB solution occurred after 2 h of visible light irradiation. The findings of the current study provide a scientific basis for the synthesis of a new generation of photocatalysts.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Yael Mishael

References

Al-Ghouti, M. A., Khraisheh, M., Ahmad, M., & Allen, S. (2009). Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study. Journal of Hazardous Materials, 165(1-3), 589598.CrossRefGoogle ScholarPubMed
Chang, F., Xie, Y., Li, C., Chen, J., Luo, J., Hu, X., et al. (2013). A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Applied Surface Science, 280, 967974.CrossRefGoogle Scholar
Cheng, W., Shi, H., Pu, Z., & Yan, L. (2011). Synthesis and characterization of kaolinite/TiO2 nano-photocatalysts. Applied Clay Science, 53, 646649.Google Scholar
Davis, E. A., & Mott, N. F. (1970). Electrical and Transparent Properties of Amorphous Semiconductor. Philosophical Magazine, 22, 903920.CrossRefGoogle Scholar
Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 3350.CrossRefGoogle Scholar
Fatimah, I., Wang, S., & Wulandari, D. (2011). ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Applied Clay Science, 53, 553560.CrossRefGoogle Scholar
Fujishima, A., Zhang, X., & Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63, 515582.CrossRefGoogle Scholar
Herron, J. A., Kim, J., Upadhye, A. A., Huber, G. W., & Maravelias, C. T. (2015). A general framework for the assessment of solar fuel technologies. Energy & Environmental Science, 8, 126157.CrossRefGoogle Scholar
Huang, J., & Li, Z. (2012). X-ray diffraction of polycrystalline materials: experimental principle, method and application [M]. Metallurgical Industry Press.Google Scholar
Kumar, S., Karthikeyan, S., & Lee, A. (2018). g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, 8(74), 147.CrossRefGoogle Scholar
Li, C., Sun, Z., Huang, W., & Zheng, S. (2016). Facile synthesis of g-C3N4/montmorillonite composite with enhanced visible light photodegradation of rhodamine B and tetracycline. Journal of the Taiwan Institute of Chemical Engineers, 66, 363371.CrossRefGoogle Scholar
Li, C., Sun, Z., Zhang, W., Yu, C., & Zheng, S. (2018). Highly efficient g-C N/TiO/kaolinite composite with novel threedimensional structure and enhanced visible light responding ability towards ciprofloxacin and s. aureus. Applied Catalysis B Environmental, 220, 272282.CrossRefGoogle Scholar
Li, J., Liu, E., Ma, Y., Hu, X., Wan, J., Sun, L., & Fan, L. (2016). Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Applied Surface Science, 364(28), 694702.CrossRefGoogle Scholar
Li, P. P., Huang, L.Y., Li, Y.P., Xu, Y.G., Huang, S.Q., Yuan, D., Xu, H., & Li, H.M. (2017). Synthesis of dark orange montmorillonite/g-C N composites and their applications in the environment. Journal of Physics & Chemistry of Solids, 107, 131139.CrossRefGoogle Scholar
Li, S., Kun, C., Huabin, Z., Xiao, H., Liuqing, Y., Tao, W., & Jinhua, Y. (2016). Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3N4 Nanosheets under Visible Light. Small, 12(32), 44314439.Google Scholar
Li, Y., Zhan, J., Huang, L., Xu, H., Li, H., Zhang, R., & Wu, S. (2014). Synthesis and photocatalytic activity of a bentonite/g-C N composite. RSC Advances, 4(23), 1183111839.CrossRefGoogle Scholar
Liang, Q. (2015). Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Advanced Functional Materials, 25(44), 68856892.CrossRefGoogle Scholar
Liu, L., Shi, Y., Yu, B., Tai, Q., Wang, B., Feng, X., Liu, H., Wen, P., Yuan, B., & Hu, Y. (2015). Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Advances, 5(16), 1176111765.CrossRefGoogle Scholar
Peng, K., Fu, L., Ouyang, J., & Yang, H. (2016). Emerging Parallel Dual 2D Composites: Natural Clay Mineral Hybridizing MoS2 and Interfacial Structure. Advanced Functional Materials, 26(16), 26662675.CrossRefGoogle Scholar
Ralph, E. G., Richards, A. R. (1942). Differential thermal analysis of clay minerals and other hydrous materials. part 1. American Mineralogist, 27(11), 746761.Google Scholar
Shi, Y.Q., Jiang, S.H., Zhou, K.Q., Wang, B.B., Gui, G., Hu, Y., & Yuen, K.K. (2013). Facile preparation of ZnS/g-C3N4 nanohybrids for enhanced optical properties. RSC Advances, 4(6), 26092613.CrossRefGoogle Scholar
Shi, L., Chang, K., Zhang, H., Hai, X., Yang, L., Wang, T., & Ye, J.H. (2016). Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C N Nanosheets under Visible Light. Small, 12(32), 44314439.CrossRefGoogle Scholar
Shmuel, Y., Müller-Vonmoos, M., Gunter, K., & Anton, R. (1989). Thermal analytic study of the adsorption of crystal violet by montmorillonite. Thermochimica Acta, 148(6), 457466.Google Scholar
Sonawane, S.H., Gumfekar, S.P., Kate, K.H., Meshram, S.P., Kunte, K.J., Ramjee, L., Mahajan, C.M., Parande, M.G., & Ashokkumar, M. (2010). Hydrodynamic cavitation-assisted synthesis of nanocalcite. International Journal of Chemical Engineering, 2010, 18.CrossRefGoogle Scholar
Sun, Z., Chen, Y., Qiang, K., Ye, Y., & Yuan, J. (2002). Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology, A: Chemistry, 149, 169174.CrossRefGoogle Scholar
Swinehart, D.F. (1962). The Beer-Lambert Law. Journal of Chemical Education, 39(7), 333335.CrossRefGoogle Scholar
Tauc, J. (1974). Optical Properties of Amorphous Semiconductors. Amorphous and Liquid Semiconductors., 4, 159220.CrossRefGoogle Scholar
Thomas, A., Fischer, A., Frederic, , Goettmann, F., Antonietti, M., Muller, J.O., Schlogl, R., & Carlsson, J.M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 48934908.CrossRefGoogle Scholar
Wang, X.C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Material, 8, 7680.CrossRefGoogle ScholarPubMed
Wang, Y.Y., Zhao, S., Zhang, Y.W., Chen, W.X., Yuan, S.H., Zhou, Y.M., & Huang, Z.W. (2018). Synthesis of graphitic carbon nitride with large specific surface area via copolymerizing with nucleobases for photocatalytic hydrogen generation. Applied Surface Science, 463, 18.CrossRefGoogle Scholar
Xue, J., Ma, S., Zhou, Y., Zhang, Z., & He, M. (2015). Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Applied Materials & Interfaces, 7, 96309637.CrossRefGoogle ScholarPubMed
Yan, S. C., Li, Z. S., & Zou, Z. G. (2009). Photodegradation performance of g-C3N4 fabricated by directly heating mela-mine. Langmuir, 25, 1039710401.CrossRefGoogle Scholar
Zhao, W., & Tan, W. F. (2018). Quantitative and structural analysis of minerals in soil clay fractions developed under different climate zones in China by XRD with Rietveld method, and its implications for pedogenesis. Applied Clay Science, 162, 351361.CrossRefGoogle Scholar