Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-03T22:27:40.430Z Has data issue: false hasContentIssue false

Evaluation of the Hydraulic Conductivity of Geosynthetic Clay Liners

Published online by Cambridge University Press:  01 January 2024

Juan Hou*
Affiliation:
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China School of Engineering, University of Virginia, Charlottesville, VA 22904, USA
Yuyang Teng
Affiliation:
School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
Shifen Bao
Affiliation:
School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
Hao Li
Affiliation:
School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
Lei Liu
Affiliation:
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China Hubei Province Key Laboratory of Contaminated Sludge & Soil Science and Engineering, Wuhan 430071, China

Abstract

The hydraulic conductivity of geosynthetic clay liners (GCLs) is not fully understood and certain gaps in knowledge are still present, such as the effect of coupled mechanical and chemical processes. The current study aimed to develop a simplified mathematical model to predict the hydraulic conductivity of GCLs, particularly regarding the coupled effects of mechanical and chemical processes. Based on Darcy's Law and Poiseuille’s Law, the method combines diffuse double layer (DDL) theory and fractal theory. External factors such as confining pressure and the concentration of the permeating solution, and inherent properties such as exchangeable cations, ionic radius, montmorillonite surface fractal dimension, the distance between two montmorillonite layers (m) after swelling at the exchangeable cation i (i denotes the primary exchangeable cations, such as Na+, Ca2+, K+, and Mg2+ in bentonite), density, and coefficient of viscosity of interlayer water between two montmorillonite layers, were considered. The proposed theoretical model gave relatively accurate predictions. A practical estimate of GCL hydraulic conductivity was also derived. The predictions were compared with experimental results and good qualitative agreement was found. From the experimental results, the proposed prediction model has a maximum deviation of ~1:10–10:1, and the empirical model has a mean deviation of ~1:15–15:1.

Type
Original Paper
Copyright
Copyright © The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuel-Naga, H. M., Bouazza, A., & Gates, W. P. (2013). Thermomechanical behaveior of saturatd geosynthetic clay liners. Journal of Geotechnical and Geo-Environmental Engineering, 139, 539547. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000799CrossRefGoogle Scholar
Altoé, M., Michels, L., Santos, E., & Roosevelt, D. Jr. (2016). Continuous water adsorption states promoted by Ni2+ confined in a synthetic smectite[J]. Applied Clay Science, 123, 8391. https://doi.org/10.1016/j.clay.2016.01.012CrossRefGoogle Scholar
Avnir, D., & Jaroniec, M. (1989). An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir, 5, 14311433. https://doi.org/10.1021/la00090a032CrossRefGoogle Scholar
Benson, C. H., Chen, J. N., Edil, T. B., & Likos, W. J. (2018). Hydraulic conductivity of compacted soil liners permeated with coal combustion product leachates. Journal of Geotechnical and Geoenvironmental Engineering, 144, 04018011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001855CrossRefGoogle Scholar
Benson, C.H. (2013). Impact of subgrade water content on cation exchange and hydraulic conductivity of geosynthetic clay liners in composite barriers. In Coupled Phenomena in Environmental Geotechnics; CRC Press: Boca Raton, Florida, USA. pp. 7984. https://doi.org/10.1201/b15004CrossRefGoogle Scholar
Boadu, F. K. (2000). Hydraulic conductivity of soils from grain size distribution: New Models. Journal of Geotechnical and Geoenvironmental Engineering, 126, 739746. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:8(739)CrossRefGoogle Scholar
Bolt, G. H. (1956). Physicochemical analysis of the compressibility of pure clays. Geotechnique, 6, 8693. https://doi.org/10.1680/geot.1956.6.2.86CrossRefGoogle Scholar
Bouazza, A. (2002). Geosynthetic clay liners. Geotextiles and Geomembranes, 20, 37. https://doi.org/10.1016/S0266-1144(01)00025-5CrossRefGoogle Scholar
Bouazza, A., Zornberg, J., McCartney, J., & Singh, R. M. (2013). Unsaturated geotechnics applied to geoenvironmental engineering problems involving geo-synthetics. Engineering Geology, 165, 143153. https://doi.org/10.1016/j.enggeo.2012.11.018CrossRefGoogle Scholar
Bouazza, A., Singh, R. M., & Rowe, R. K. (2014). Heat and moisture migration in a geomembrane-GCL composite liner subjected to high tem-peratures and low vertical stresses. Geotextiles and Geomembranes, 42, 555563. https://doi.org/10.1016/j.geotexmem.2014.08.002CrossRefGoogle Scholar
Bouazza, A. Gates, W.P., & Abuel-Naga, H. (2006). Factors impacting liquid and gas flow through geosynthetic clay liners. In: Two Decades of Geosynthetics in India, pp. 119146. https://www.researchgate.net/publication/285773141_Factors_impacting_liquid_and_gas_flow_through_geosynthetic_clay_linersGoogle Scholar
Bradshaw, S. L., Benson, C. H., & Rauen, T. L. (2016). Hydraulic conductivity of geosynthetic clay liners to recirculated municipal solid waste leachates. Jo-Urnal of Geotechnical and Geoenvironmental Engineering, 142, 04015074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001387CrossRefGoogle Scholar
Chai, J. C., & Shen, S. L. (2018). Predicting swelling behavior of a Na+-Bentonite used in GCLs. International Journal of Geosynthetics and Ground Engineering, 4, 9. https://doi.org/10.1007/s40891-018-0126-xCrossRefGoogle Scholar
Chen, Y. G., Zhu, C. M., Ye, W. M., Cui, Y. J., & Chen, B. (2016). Effects of solut-ion concentration and vertical stress on the swelling behavior of compact-ed GMZ01 bentonite. Applied Clay Science, 124–125, 1120. https://doi.org/10.1016/j.clay.2016.01.050CrossRefGoogle Scholar
Chen, J. N., Benson, C. H., & Edil, T. B. (2019). Hydraulic conductivity of geosy-nthetic clay liners with sodium bentonite to coal combustion product leac-hates. Journal of Geotechnical and Geoenvironmental Engineering, 144, 04018008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001844CrossRefGoogle Scholar
Chung, J., & Daniel, D. (2008). Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite. Geotechnical Testing Journnal, 3, 243251. https://www.astm.org/gtj100005.htmlGoogle Scholar
Colin, E., Clarke, W., & Clew, D. N. (1985). Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 °C. Journal of Physical and Chemical Reference Data, 14, 489610. https://doi.org/10.1063/1.555730Google Scholar
Dexter, A. R., & Richard, G. (2009). The saturated hydraulic conductivity of soils with n-modal pore size distributions. Geoderma, 154, 7685. https://doi.org/10.1016/j.geoderma.2009.09.015CrossRefGoogle Scholar
Dominijanni, A., Manassero, M., & Puma, S. (2012). Coupled chemical hydraul-icme-chanical behaviour of bentonites. Geotechnique, 63, 191205. https://doi.org/10.1680/geot.SIP13.P.010CrossRefGoogle Scholar
Dominijanni, A., Guarena, N., & Manassero, M. (2018). Laboratory assessment of semi-permeable properties of a natural sodium bentonite. Canadian Gotechnical Journal, 55, 16111631. https://doi.org/10.1139/cgj-2017-0599CrossRefGoogle Scholar
Draper, N. R., & Smith, H. (1981). Applied Regression Analysis (2nd ed.). Wiley, New York.Google Scholar
Egloffstein, T. A. (2001). Natural bentonites—influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotextiles and Geomembranes, 19, 427444. https://doi.org/10.1016/S0266-1144(01)00017-6CrossRefGoogle Scholar
Fox, P. J., & Ross, J. D. (2011). Relationship between NPGCL internal and HDPE GMX/NP GCL interface shear strengths. Journal of Geotechnical and Geoenvironmental Engineering, 137, 743753. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000490CrossRefGoogle Scholar
Gates, W. P., Aldridge, L. P., Carnero-Guzman, G. G., et al. (2017). Water desorption and absorption isotherms of sodium montmorillonite: A QENS study. Applied Clay Science, 147, 97104. https://doi.org/10.1016/j.clay.2017.07.011CrossRefGoogle Scholar
Giroud, J., Badu-Tweneboah, K., & Soderman, K. L. (1997). Comparison of leachate flow through compacted clay liners in landfill liner systems. Geosynthetics International, 4, 34. https://doi.org/10.1680/gein.4.0100CrossRefGoogle Scholar
Guan, C., Xie, H. J., Wang, Y. Z., Chen, Y. M., Jiang, Y. S., & Tang, X. W. (2014). An Analytical model for solute transport through a GCL-based two-layered liner considering biodegradation. Science of the Total Environment, 466–467, 221231. https://doi.org/10.1016/j.scitotenv.2013.07.028CrossRefGoogle ScholarPubMed
Jadda, K., & Bag, R. (2020). Variation of swelling pressure, consolidation characteristics and hydraulic conductivity of two Indian bentonites due to electrolyte concentration. Engineering Geology, 272. https://doi.org/10.1016/j.enggeo.2020.105637CrossRefGoogle Scholar
Jo, H. Y., Katsumi, T., & Benson, C. H. (2001). Hydraulic conductivity and swell-ing of nonprehydrated GCLs permeated with single-species salt solutions. Journal of Geotechnical and Geoenvironmental Engineering, 127, 557567. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557)CrossRefGoogle Scholar
Jo, H. Y., Benson, C. H., Shackelford, C. D., Lee, J. M., & Edil, T. B. (2005). Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. Journal of Geotechnical and Geoenvironmental Engineering, 131, 405417. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(405)CrossRefGoogle Scholar
Kang, J. B., & Shackelford, C. D. (2011). Consolidation enhanced membrane behavior of a geosynthetic clay liner. Geotextiles and Geomembranes, 29, 544556. https://doi.org/10.1016/j.geotexmem.2011.07.002CrossRefGoogle Scholar
Kolstad, D. C., Benson, C. H., & Edil, T. B. (2004). Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. Journal of Geotechnical and Geoenvironmental Engineering, 130, 12361249. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1236)CrossRefGoogle Scholar
Kolstad, D. C., Benson, C. H., & Edil, T. B. (2006). Errata for “Hydraulic conducti-vity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions.” Journal of Geotechnical and Geoenvironmental Engineering, 132, 962962. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(962)CrossRefGoogle Scholar
Komine, H. (2004a). Simplified evaluation for swelling characteristics of bentonites. Engineering Geology, 71, 265279. https://doi.org/10.1016/S0013-7952(03)00140-6CrossRefGoogle Scholar
Komine, H. (2004b). Simplified evaluation on hydraulic conductivities of sand be-ntonite mixture backfill. Applied Clay Science., 26, 1319. https://doi.org/10.1016/j.clay.2003.09.006CrossRefGoogle Scholar
Komine, H. (2005). Theoretical equations for evaluating hydraulic conductivities of bentonite-based buffer and backfill. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 22892292.Google Scholar
Komine, H., & Ogata, N. (1996). Prediction for swelling characteristics of comp-acted bentonite. Canadian Gotechnical Journal, 33, 1122. https://doi.org/10.1139/t96-021CrossRefGoogle Scholar
Komine, H., & Ogata, N. (2003). New equations for swelling characteristics of bentonite-based buffer materials. Canadian Gotechnical Journal, 40, 460475. https://doi.org/10.1139/t02-115CrossRefGoogle Scholar
Komine, H., & Ogata, N. (2004). Predicting swelling characteristics of bentonites. Journal of Geotechnical and Geoenvironmental Engineering, 130, 818829. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(818)CrossRefGoogle Scholar
Lang, A. R. G. (1967). Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40°C. Australian Journal of Chemistry, 20, 20172023. https://doi.org/10.1071/CH9672017CrossRefGoogle Scholar
Lee, J. M., & Shackelford, C. D. (2005). Concentration dependency of the prehydration effect for a geosynthetic clay liner. Soils and Foundations, 45, 2741. https://doi.org/10.3208/sandf.45.4_27CrossRefGoogle Scholar
Lee, J. M., Shackelford, C. D., Benson, C. H., et al. (2005). Correlating index properties and hydraulic conductivity of geosynthetic clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 131, 13191329. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1319)CrossRefGoogle Scholar
Li, X. Y., & Xu, Y. F. (2019). Method for calculating swelling deformation of bentonite in salt solution. Chinese Journal of Geotechnical Engineering, 41, 23532359.Google Scholar
Li, Q., Chen, J. N., Benson, C. H., et al. (2020). Hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners permeated with bauxite liquor. Geotextiles and Geomembranes, 49, 420429. https://doi.org/10.1016/j.geotexmem.2020.10.015CrossRefGoogle Scholar
Liu, Y., Gates, W. P., Bouazza, A., & Rowe, R. K. (2014). Fluid loss as a quick method to evaluate hydraulic conductivity of geosynthetic clay liners under acidic conditions. Canadian Geotechnical Journal, 51, 158163. https://doi.org/10.1139/cgj-2013-0241CrossRefGoogle Scholar
Liu, Y. Hao & Wang, L.Z. (2018). Using fluid loss to evaluate the hydraulic conductivity of geosynthetic clay liners under mining leachates. Proceedings of the 8th International Congress on Environmental Geotechnics. 2, 679685. https://doi.org/10.1007/978-981-13-2224-2_84Google Scholar
Malusis, M. A., Shackelford, C. D., & Kang, J. B. (2015). Restricted salt diffusion in a geosynthetic clay liner. Environmental Geotechnics, 2, 6877. https://doi.org/10.1680/envgeo.13.00080CrossRefGoogle Scholar
Mandelbrot, B. B. (1982). The fractal geometry of nature. W.H. Freeman.Google Scholar
Mesri, G., & Olson, R. E. (1970). Shear strength of montmorillonite. Geotechnique, 20, 261270. https://doi.org/10.1680/geot.1970.20.3.261CrossRefGoogle Scholar
Michels, L., Méheust, Y., Mario, A. S., Santos, A. É. C., dos Hemmen, H., Droppa, R., Fossum, J. J. O., & Silva, G. J. (2019). Water vapor diffusive transport in a smectite clay: Cationic control of normal versus anomalous diffusion. Physical Review E, 99, 1. https://doi.org/10.1103/PhysRevE.99.013102CrossRefGoogle Scholar
Michels, L., Fonseca, C., Méheust, M. A. S., Altoé, E. C. S., Grassi, G., Droppa, R., Knudsen, J. K. D., Cavalcanti, L. P., & Cavalcanti, P. (2020). The Impact of Thermal History on Water Adsorption in a Synthetic Nanolayered Silicate with Intercalated Li+ or Na+. The Journal of Physical Chemistry C, 124(45), 2469024703. https://doi.org/10.1021/acs.jpcc.0c05847CrossRefGoogle Scholar
Naka, A., Flores, G., Katsumi, T., & Sakanakura, H. (2016). Factors influencing hydraulic conductivity and metal retention capacity of geosynthetic clay liners exposed to acid rock drainage. Japanese Geotechnical Society Special Publication, 2, 23792384. https://doi.org/10.3208/jgssp.IGS-43CrossRefGoogle Scholar
Nakano, K., & Miyazaki, T. (2005). Predicting the saturated hydraulic conductivity of compacted subsoils using the nonsimilar media concept. Soil and Tillage Research, 84, 145153. https://doi.org/10.1016/j.still.2004.11.010CrossRefGoogle Scholar
Neimark, A. V. (1990). Thermodynamic method for calculating surface fractal dimension. Soviet Journal of Experimental and Theoretical Physics Letters, 50, 607.Google Scholar
Peng, L., Chen, B., & Pan, Y. (2020). Evaluation and comparison of bentonite surface fractal dimension and prediction of swelling deformation: Synchrotron radiation SAXS and N2-adsorption isotherms method. Construction and Building Materials, 269, 121331. https://doi.org/10.1016/j.conbuildmat.2020.121331CrossRefGoogle Scholar
Petrov, R. J., & Rowe, R. K. (1997). Geosynthetic clay liner (GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Canadian Gotechnical Journal, 34, 863885. https://doi.org/10.1139/t97-055CrossRefGoogle Scholar
Pfeifer, P., & Schmidt, P. W. (1988). Porod scattering from fractal surfaces. Physical Review Letters, 60, 1435. https://doi.org/10.1103/PhysRevLett.60.1344Google Scholar
Pusch, R. (1999). Microstructural evolution of buffers. Engineering Geology, 54, 3341. https://doi.org/10.1016/S0013-7952(99)00059-9CrossRefGoogle Scholar
Pusch, R., & Yong, R. (2003). Water saturation and retention of hydrophilic cl-ay buffer microstructural aspects. Applied Clay Science, 23, 6168. https://doi.org/10.1016/S0169-1317(03)00087-5CrossRefGoogle Scholar
Quinton, W. L., Elliot, T., Price, J. S., Rezanezhad, F., & Heck, R. (2009). Measuring physical and hydraulic properties of peat from X-ray tomography. Geoderma, 153, 269277. https://doi.org/10.1016/j.geoderma.2009.08.010CrossRefGoogle Scholar
Rao, S. M., & Thyagaraj, T. (2007). Swell-compression behaviour of compacted clays under chemical gradients. Canadian Gotechnical Journal, 44, 520532. https://doi.org/10.1139/t07-002CrossRefGoogle Scholar
Rouf, M. A., Bouazza, A., Singh, R. M., Gates, W. P., & Rowe, R. K. (2016). Water vapour adsorption and desorption in GCLs. Geosynthetics International, 23, 8699. https://doi.org/10.1680/jgein.15.00034CrossRefGoogle Scholar
Rowe, R.K. (1998). Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste. Proceedings 6th International Conference on Geosynthetics, Atlanta. 1, 27102. https://www.researchgate.net/publication/291698097Google Scholar
Rowe, R. K. (2014). Performance of GCLs in liners for landfill and mining ap-plications. Environmental Geotechnics, 1, 321. https://doi.org/10.1680/envgeo.13.00031CrossRefGoogle Scholar
Saidi, F., Touze-Foltz, N., & Goblet, P. (2006). 2D and 3D numerical modelling of flow through composite liners involving partially saturated GCLs. Geosynthetics International, 13, 265276. https://doi.org/10.1680/gein.2006.13.6.265CrossRefGoogle Scholar
Scalia, J., & Benson, C. H. (2011). Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers with composite barriers. Journal of Geotechnical and Geoenviron-Mental Engineering, 137, 113. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000407CrossRefGoogle Scholar
Scalia, J., Bohnhof, G. L., Shackelford, C. D., Benson, C. H., Sample-Lord, K. M., Malusis, M. A., & Likos, W. J. (2018). Enhanced bentonites for containment of inorganic waste leachates by GCLs. Geosynthetics International, 25, 392411. https://doi.org/10.1680/jgein.18.00024CrossRefGoogle Scholar
Schaap, M. G., & Leij, F. J. (1998). Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 47, 3742. https://doi.org/10.1016/S0167-1987(98)00070-1CrossRefGoogle Scholar
Schanz, T., & Tripathy, S. (2009). Swelling pressure of a divalent-rich bentonite: Diffuse double-layer theory revisited. Water Resources Research, 45, W00C12. https://doi.org/10.1029/2007WR006495CrossRefGoogle Scholar
Shackelford, C. D., Sevick, G. W., & Eykholt, G. R. (2010). Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions. Geotextiles and Geomembranes, 28, 149162. https://doi.org/10.1016/j.geotexmem.2009.10.005CrossRefGoogle Scholar
Shen, S. L., Wang, J. P., Wu, H. N., Xu, Y. S., Ye, G. L., & Yin, Z. Y. (2015). Evaluation of hydraulic conductivity for both marine and deltaic deposit based on piezocone test. Ocean Engineering, 110, 174182. https://doi.org/10.1016/j.oceaneng.2015.10.011CrossRefGoogle Scholar
Siddiqua, S. S., Blatz, J. B., & Siemens, G. S. (2011). Evaluation of the impact of pore fluid chemistry on the hydromel-chanical behavior of clay-based sealing materials. Canadian Geotechnical Journal, 48, 199213. https://doi.org/10.1139/T10-064CrossRefGoogle Scholar
Siemens, G., Take, W. A., Rowe, R. K., & Brachman, R. W. I. (2012). Numerical investigation of transient hydration of unsaturated geosynthetic clay liners. Geosynthetics International, 19, 232251. https://doi.org/10.1680/gein.12.00011CrossRefGoogle Scholar
Sposito, G. (1984). The Surface Chemistry of Soils. Oxford University Press, Oxford, UK.Google Scholar
Stępniewski, W. Widomski, & Horn, R. (2011). Hydraulic conductivity and landfill construction. In Dikinya, O. (ed.): Developments in Hydraulic Conductivity Research. Intech, Rijeka, Croatia, 249270.Google Scholar
Thevanayagam, S., & Nesarajah, S. (1998). Fractal model for flow through saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 124, 5366. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(53)CrossRefGoogle Scholar
Vasko, S. Jo, H.Y. Benson, C.H., & Edil, T.B. (2001). Hydraulic conductivity of partially prehydrated geosynthetic clay liners permeated with aqueous calcium chloride solutions. Proc. Geosynthetics, St. Paul, Minnesota, USA. 685699. https://www.researchgate.net/publication/285735788Google Scholar
Wang, B., Xu, J., Chen, B., Dong, X. L., & Dou, T. T. (2019a). Hydraulic conductivity of geosynthetic clay liners to inorganic waste leachate. Applied Clay Science, 168, 244–238. https://doi.org/10.1016/j.clay.2018.11.021CrossRefGoogle Scholar
Wang, B., Chen, B., Dou, T. T., & Dong, X. L. (2019b). Influences of stabilization/solidification product leachates on hydraulic performance of geosynthetic clay liners. Chinese Journal of Geotechnical Engineering, 41, 390396. http://manu31.magtech.com.cn/Jwk_ytgcxb/EN/abstract/abstract17697.shtml in Chinese.Google Scholar
Wang, B., Dong, X. L., Chen, B., & Dou, T. T. (2019c). Hydraulic conductivity of geosynthetic clay liners permeated with acid mine drainage. Mine Water and the Environment, 38, 658666. https://doi.org/10.1007/s10230-019-00611-7CrossRefGoogle Scholar
Xiang, S. G., Xu, Y. F., Yu, F., Fang, Y., & Wang, Y. (2019). Prediction of swelling characteristics of compacted GMZ bentonite in salt solution incorporating ion-exchange reactions. Clays and Clay Minerals, 67, 163172.CrossRefGoogle Scholar
Xie, H. J., Zhang, C. H., Feng, S. J., & Wang, Q. (2018). Analytical model for degradable organic contaminant transport through GMB/GCL/AL system. Journal of Environmental Engineering, 144, 04018006. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001338CrossRefGoogle Scholar
Xu, Y. F., Matsuoka, H., & Sun, D. A. (2003). Swelling characteristics of fractal-textured bentonite and its mixtures. Applied Clay Science, 22, 197209. https://doi.org/10.1016/S0169-1317(02)00159-XCrossRefGoogle Scholar
Xu, Y. F., Sun, D. A., & Yao, Y. P. (2004). Surface fractal dimension of bentonite and its application to determination of swelling properties chaos. Solitons and Fractals, 19, 347356. https://doi.org/10.1016/S0960-0779(03)00047-XCrossRefGoogle Scholar
Xu, Y., Xiang, G., Jiang, H., Chen, T., & Chu, F. F. (2014a). Role of osmotic suction in volume change of clays in salt solution. Applied Clay Science, 101, 354361. https://doi.org/10.1016/j.clay.2014.09.006CrossRefGoogle Scholar
Xu, Y. F., Xiang, G. S., Jiang, H., Chen, T., & Chu, F. F. (2014b). Role of osmotic suction in volume change of clays in salt solution. Applied Clay Science, 101, 354361. https://doi.org/10.1016/j.clay.2014.09.006CrossRefGoogle Scholar
Xue, Q., Zhang, Q., & Liu, L. (2012). Impact of high concentration solutions on hydraulic properties of geosynthetic clay liner materials. Materials, 5, 23262341. https://doi.org/10.3390/ma5112326CrossRefGoogle Scholar
Yan, H. X., Wu, J. W., & Thomas, H. R. (2020). Analytical model for coupled consolidation and diffusion of organic contaminant transport in triple landfill liners. Geotextiles and Geomembranes, 49, 489499. https://doi.org/10.1016/j.geotexmem.2020.10.019CrossRefGoogle Scholar
Yin, Y. (1991). Adsorption isotherm on fractally porous materials. Langmuir, 7, 216217. https://doi.org/10.1021/la00050a002CrossRefGoogle Scholar
Yong, R. N., & Mohamed, A. M. O. (1992). A study of particle interaction energies in wetting of unsaturated expensive clays. Canadian Gotechnical Journal, 29, 10601070. https://doi.org/10.1139/t92-123CrossRefGoogle Scholar
Zhu, C. M., Ye, W. M., Chen, Y. G., Chen, B., & Cui, Y. J. (2015). Impact of cyclically infiltration of CaCl2 solution and deionized water on volume change behavior of compacted GMZ01 bentonite. Engineering Geology, 184, 104110. https://doi.org/10.1016/j.enggeo.2014.11.005CrossRefGoogle Scholar
Supplementary material: File

Hou et al. supplementary material
Download undefined(File)
File 33.4 KB
Supplementary material: File

Hou et al. supplementary material
Download undefined(File)
File 22.2 KB
Supplementary material: File

Hou et al. supplementary material
Download undefined(File)
File 21.3 KB