Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T09:44:09.481Z Has data issue: false hasContentIssue false

Firing Tests on Clay-Rich Raw Materials from the Algarve Basin (Southern Portugal): Study of Mineral Transformations with Temperature

Published online by Cambridge University Press:  01 January 2024

Maria José Trindade*
Affiliation:
Institute Tecnológico e Nuclear EN 10, 2686-953 Sacavém, Portugal GeoBioTec — GeoBiociências, Geotecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
Maria Isabel Dias
Affiliation:
Institute Tecnológico e Nuclear EN 10, 2686-953 Sacavém, Portugal GeoBioTec — GeoBiociências, Geotecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
João Coroado
Affiliation:
Departamento Arte, Conservação e Restaura, Institute Politécnico de Tornar, 2300-313 Tornar, Portugal GeoBioTec — GeoBiociências, Geotecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
Fernando Rocha
Affiliation:
Departamento de Geociências, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal GeoBioTec — GeoBiociências, Geotecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
*
* E-mail address of corresponding author: mjtrindade@itn.pt

Abstract

In cases where the provenance of raw materials used in the manufacture of local archeological ceramics is of interest, a detailed study of thermal transformations of minerals may be useful. The purpose of this study was to measure mineralogical transformations of different types of clays obtained during experimental firing runs, carried out at different temperatures, with the main goal of establishing Algarve reference groups based on the composition of raw material and high-temperature mineralogy, which may be compared with ceramics in studies of provenance. Eleven samples of clay-rich raw materials from the Algarve Basin (southern Portugal) were fired to temperatures ranging from 300 to 1100°C in increments of 100°C under oxidizing conditions. These were chosen to have variable chemical and mineralogical compositions, representing the main compositional range of the clay deposits from the region. Mineralogical and geochemical characterizations of the original clays were carried out by X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. Mineral transformations on the fired products were also studied by XRD.

Three groups of clays were distinguished according to the type of neoformed high-temperature minerals: (1) non-calcareous clays; (2) clays containing calcite as the only carbonate; and (3) clays with dolomite or dolomite + calcite. Firing of non-calcareous clays produced mullite at 1100–1200°C. Gehlenite and wollastonite formed by firing calcite-rich clays above 900°C, accompanied by anorthite or larnite in samples with small or large calcite contents, respectively. Firing of dolomite-rich clays at temperatures >900°C yielded a member of the gehlenite-åkermanite group and diopside. Anorthite, enstatite, periclase, forsterite, and monticellite may also form in the firing products.

Type
Article
Copyright
Copyright © Clays and Clay Minerals 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, F.J.S. Diogo, A.D. Reiner, F., Alarcão, A. Mayet, F., 1990 A propósito dos fornos de cerâmica lusitano-romanos de S. Bartolomeu do Mar Ânforas lusitanas. Tipologia, produção, comércio Coimbra, Portugal Museu Monográfico de Conímbriga 193198.Google Scholar
Aras, A., 2004 The change of phase composition in kaoliniteand illite-rich clay-based ceramic bodies Applied Clay Science 24 257269 10.1016/j.clay.2003.08.012.CrossRefGoogle Scholar
Arruda, A.M. Fabião, C., Alarcäo, A. Mayet, F., 1990 Ânforas da Quinta do Lago (Loulé) Les amphores Lusitaniennes. Typologie, Production, Commerce Paris De Bocard 199213.Google Scholar
Benhammou, A. Tanouti, B. Nibou, L. Yaacoubi, A. and Bonnet, J.-P., 2009 Mineralogical and physicochemical investigation of Mg-smectite from Jbel Ghassoul, Morocco Clays and Clay Minerals 57 264270 10.1346/CCMN.2009.0570212.CrossRefGoogle Scholar
Biscaye, P.E., 1965 Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification 10.1180/mono-5.CrossRefGoogle Scholar
Cachão, M., 1995 Utilização de nanofósseis calcârios em biostratigrafia, paleocenografia e paleocologia. Aplicações ao Neogénico do Algarve (Portugal) e do Mediterrâneo Ocidental (ODP 653) e a problemâtica de Coccolithus pelagicus .Google Scholar
Cachão, M. and Silva, C.M., 1992 Neogene palaeogeographic evolution of Algarve Basin (southern Portugal): a two step model. Preliminary data Gaia 4 3942.Google Scholar
Cachäo, M. Boski, T. Moura, D. Dias, R.P. Silva, C.M. Santos, A. Pimentel, N. and Cabrai, J., 1998 Proposta de articulação das unidades sedimentares neogénicas e quater-nârias do Algarve (Portugal). Actas do V Congresso Nacional de Geologia Comunicaqöes do Instituto Geológico e Mineiro 84 A169A172.Google Scholar
Chen, C.Y. Lan, C.S. and Tuan, W.H., 2000 Microstructural evolution of mullite during the sintering of kaolin powder compacts Ceramics International 26 715720 10.1016/S0272-8842(00)00009-2.CrossRefGoogle Scholar
Cultrone, G. Rodriguez-Navarro, C. Sebastian, E. Cazalla, O. and De La Torre, M.J., 2001 Carbonate and silicate phase reactions during ceramic firing European Journal of Mineralogy 13 621634 10.1127/0935-1221/2001/0013-0621.CrossRefGoogle Scholar
Dias, M.I. Viegas, C. Gouveia, M.A. Marques, R. Franco, D. Prudêncio, M.I., Biró, K.T. Szilágyi, V. Kreiter, A., 2009 Geochemical fingerprinting of Roman pottery production from Manta Rota kilns (southern Portugal) Separate monograph of the Hungarian National Museum Hungary Hungarian National Museum 8391.Google Scholar
Duminuco, P. Messiga, B. and Riccardi, M.P., 1998 Firing process of natural clays. Some microtextures and related phase compositions Thermochimica Acta 321 185190 10.1016/S0040-6031(98)00458-4.CrossRefGoogle Scholar
Fabião, C., Bernai, D. Lagóstena, L., 2004 Centros oleiros da Lusitania: balanço dos conhecimentos e perspectivas de investigação Actas del Congreso Internacional Figlinae Baeticae. Talleres alfareros y producciones cerâmicas en la Bética romana (ss. II a.C - VII d.C) Oxford, UK BAR 1266 379410.Google Scholar
Ferrari, S. and Gualtieri, A.F., 2006 The use of illitic clays in the production of stoneware tile ceramics Applied Clay Science 32 7381 10.1016/j.clay.2005.10.001.CrossRefGoogle Scholar
Galhano, C. Rocha, F. and Gomes, C., 1999 Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the ‘Argilas de Aveiro’ formation (Portugal) Clay Minerals 34 109116 10.1180/000985599545966.CrossRefGoogle Scholar
Grapes, R., 2006 Pyrometamorphism Berlin Springer-Verlag.Google Scholar
Jordan, M.M. Sanfeliu, T. and De la Fuente, C., 2001 Firing transformations of Tertiary clays used in the manufacturing of ceramic tile bodies Applied Clay Science 20 8795 10.1016/S0169-1317(00)00044-2.CrossRefGoogle Scholar
Kacim, S. and Hajjaji, M., 2003 Firing transformations of a carbonatic clay from the High-Atlas, Morocco Clay Minerals 38 361365 10.1180/0009855033830102.CrossRefGoogle Scholar
Maggetti, M. and Olin, J.S., 1982 Phase analysis and its significance for technology and origin Archaeological Ceramics Boston, USA Smithsonian Institution Press 121133.Google Scholar
Maia, M., 1979 As ânforas de S. Bartolomeu de Castro Marim Clio 1 141154.Google Scholar
Maniatis, Y. Simopoulos, A. and Kostikas, A., 1983 Effect of reducing atmosphere on minerals and iron oxides developed in fired clays: the role of Ca Journal of the American Ceramic Society 66 773781 10.1111/j.1151-2916.1983.tb10561.x.CrossRefGoogle Scholar
Martin-Pozas, J.M., 1968 El analisis mineralógico cuantitativo de los filosilicatos de la arcilla por difracción de rayos X .Google Scholar
Martins, L., 1991 Actividade ígnea mesozóica em Portugal (contribuição petrológica e geoquimica) .Google Scholar
Martins, L. and Kerrich, R., 1998 Magmatismo toleitico continental no Algarve (Sul de Portugal): Um exemplo de contaminação crustal “in situ” Comunicações do Instituto Geológico e Mineiro 85 99116.Google Scholar
Miyashiro, A., 1994 Metamorphic Petrology London UCL Press.Google Scholar
Moropoulou, A. Bakolas, A. and Bisbikou, K., 1995 Thermal analysis as a method of characterizing ancient ceramic technologies Thermochimica Acta 2570 743753 10.1016/0040-6031(95)02570-7.CrossRefGoogle Scholar
Moura, D. Veiga-Pires, C. Albardeiro, L. Boski, T. Rodrigues, A.L. and Tareco, H., 2007 Holocene sea level fluctuations and coastal evolution in the central Algarve (southern Portugal) Marine Geology 237 127142 10.1016/j.margeo.2006.10.026.CrossRefGoogle Scholar
Munhâ, J., Dallmeyer, R.D. García, E M, 1990 Metamorphic evolution of the south Portuguese Zone/Pulo do Lobo Zone Pre-Mesozoic Geology of Iberia Berlin Springer-Verlag 363368 10.1007/978-3-642-83980-1_25.CrossRefGoogle Scholar
Murad, E. and Wagner, U., 1998 Clays and clay minerals: the firing process Hyperfine Interactions 117 337356 10.1023/A:1012683008035.CrossRefGoogle Scholar
Okada, K. and Otsuka, N., 1986 Characterization of spinel phase from SiO2-Al2O3 xerogels and the formation process of mullite Journal of the American Ceramic Society 69 652656 10.1111/j.1151-2916.1986.tb07466.x.CrossRefGoogle Scholar
Oliveira, A. Rocha, F. Rodrigues, A. Jouanneau, J. Dias, A. Weber, O. and Gomes, C., 2002 Clay minerals from the sedimentary cover from the Northwest Iberian shelf Progress in Oceanography 52 233247 10.1016/S0079-6611(02)00008-3.CrossRefGoogle Scholar
Oliveira, J.T., Dallmeyer, R.D. Garcia, E M, 1990 Stratigraphy and synsedimentary tectonism Pre-Mesozoic Geology of Iberia Berlin Springer-Verlag 334347 10.1007/978-3-642-83980-1_23.CrossRefGoogle Scholar
Önal, M. Yilmaz, H. and Sarikaya, Y., 2008 Some physicochemical properties of the white sepiolite known as pipestone from Eskişehir, Turkey Clays and Clay Minerals 56 511519 10.1346/CCMN.2008.0560504.CrossRefGoogle Scholar
Peters, T. and Iberg, R., 1978 Mineralogical changes during firing of calcium-rich brick clays Ceramic Bulletin 57 503509.Google Scholar
Riccardi, M.P. Messiga, B. and Duminuco, P., 1999 An approach to the dynamics of clay firing Applied Clay Science 15 393409 10.1016/S0169-1317(99)00032-0.CrossRefGoogle Scholar
Rice, P.M., 1987 Pottery Analysis: A Sourcebook Chicago, USA University of Chicago Press.Google Scholar
Schultz, L.G., 1964 Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale United States Geological Survey, Professional Paper 391-C 131.Google Scholar
Terrinha, P., 1998 Structural geology and tectonic evolution of the Algarve basin, south Portugal .Google Scholar
Terrinha, P. Rocha, R. Rey, J. Cachão, M. Moura, D. Roque, C. Martins, L. Valadares, V. Cabrai, J. Azevedo, M.R. Barbero, L. Clavijo, E. Dias, R.P. Gafeira, J. Matias, H. Matias, L. Madeira, J. da Marques Silva, C. Munhá, J. Rebelo, L. Ribeiro, C. Vicente, J. Youbi, N., Dias, R. Araüjo, A. Terrinha, P. Kullberg, J.C., 2006 A Bacia do Algarve: Estratigrafia, paleogeografia e tectónica Geologia de Portugal no contexto da Ibéria Portugal University of Evora 247316.Google Scholar
Traoré, K. Kabré, T.S. and Blanchart, P., 2000 Low temperature sintering of a pottery clay from Burkina Faso Applied Clay Science 17 279292 10.1016/S0169-1317(00)00020-X.CrossRefGoogle Scholar
Traoré, K. Kabré, T.S. and Blanchart, P., 2003 Gehlenite and anorthite crystallization from kaolinite and calcite mix Ceramics International 29 377383 10.1016/S0272-8842(02)00148-7.CrossRefGoogle Scholar
Trindade, M.J.F., 2007 Geoquimica e mineralogia de argilas da Bacia Algarvia: transformações térmicas .Google Scholar
Trindade, M.J. Dias, M.J. Coroado, J. and Rocha, F., 2009 Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve (Portugal) Applied Clay Science 42 345355 10.1016/j.clay.2008.02.008.CrossRefGoogle Scholar
Vasconcellos, J.L., 1898 Olaria luso-romana em S. Bartolomeu de Castro Marim O Arqueólogo Português 4 329336.Google Scholar
Vasconcellos, J.L., 1920 A olaria Lusitano-romana (?) de Manta Rôta O Arqueólogo Português 24 229.Google Scholar
Velde, B. and Druc, I.C., 1999 Archaeological Ceramic Materials: Origin and Utilization Berlin Springer 10.1007/978-3-642-59905-7.CrossRefGoogle Scholar
Viegas, C., 2006 O Forno romano da Manta Rota (Algarve) Produção e comércio de Preparados Piscicolas durante a Proto-História e a Época Romana no Ocidente da Peninsula Ibérica 177196.Google Scholar
Wahl, F.M. Grim, R.E. and Graf, R.B., 1961 Phase transformations in silica as examined by continuous X-ray diffraction American Mineralogist 46 196208.Google Scholar