Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-09T07:03:39.151Z Has data issue: false hasContentIssue false

Illite-Smectite Mixed-Layer Minerals in the Hydrothermal Alteration of Volcanic Rocks: I. One-Dimensional XRD Structure Analysis and Characterization of Component Layers

Published online by Cambridge University Press:  01 January 2024

Atsuyuki Inoue*
Affiliation:
Department of Earth Sciences, Chiba University, Chiba 263-8522, Japan
Bruno Lanson
Affiliation:
LGIT-Maison des GéoScience, BP53, Université de J. Fourier, 38041 Grenoble Cedex 9, France
Maria Marques-Fernandes
Affiliation:
LGIT-Maison des GéoScience, BP53, Université de J. Fourier, 38041 Grenoble Cedex 9, France
Boris A. Sakharov
Affiliation:
LGIT-Maison des GéoScience, BP53, Université de J. Fourier, 38041 Grenoble Cedex 9, France Geological Institute, Russian Academy of Sciences, Pyzhevsky per. 7, 119017 Moscow, Russia
Takashi Murakami
Affiliation:
Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
Alain Meunier
Affiliation:
HydrASA-UMR 6532 CNRS, Université de Poitiers, 40 av. Recteur Pineau, 86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
HydrASA-UMR 6532 CNRS, Université de Poitiers, 40 av. Recteur Pineau, 86022 Poitiers Cedex, France
*
*E-mail address of corresponding author: atinoue@earth.s.chiba-u.ac.jp

Abstract

For a series of mixed-layer illite-smectite (I-S) minerals from a drillhole near the Kakkonda geothermal field, one-dimensional structure analysis by X-ray diffraction (XRD) was performed using Casaturated specimens in both air-dried and ethylene glycol-solvated states. The expandability characteristics of component layers were also examined by means of alkylammonium exchange and Li saturation. The K content in the illite layers was 1.5–1.7/O20(OH)4 in the I-S series from 3 to 85% of I-layer content (% I). The layer charge of the smectite layer varied slightly within the range of 0.3–0.5/O10(OH)2 by alkylammonium exchange experiments and the expandability was independent of the beidellite content within a range of 0–0.5 by the Li-saturation test. The degree of long-range ordering represented by Reichweite (R) parameters varied from R0 to R3 via R1 and R2 with increase in % I. The I-S samples contained <10% vermiculite as the third component and the vermiculite content tended to decrease with progressive illitization.

In contrast to the smectitic R0 samples (<10% I), more illitic R0 (e.g. 35% I) and >R1 I-S samples showed complicated expandability with alkylammonium exchange. The XRD patterns of dodecylammonium-exchanged I-S samples can be interpreted by random interstratification of several types of sub-units such as layer-doublets, layer-triplets and layer-quartets present in the crystallites. This interpretation is consistent with the variation in the occurrence probabilities of layer-multiplets calculated from the junction probabilities and the proportions of layers. Because the interpretation indicates that I-S is a stack of various types of the sub-units, the smectite illitization can be described by a systematic change in the type and proportion of the sub-units constituting crystallites.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S.P. and Ylagan, R.F., (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Altaner, S.P. Weiss, C.A. Jr. and Kirkpatrick, R.J., (1988) Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals Nature 331 699702 10.1038/331699a0.CrossRefGoogle Scholar
Amouric, M. and Olives, J., (1991) Illitization of smectite as seen hy high-resolution transmission electron microscopy European Journal of Mineralogy 3 831835 10.1127/ejm/3/5/0831.CrossRefGoogle Scholar
Barron, R.F. Slade, P. and Frost, R.L., (1985) Ordering of aluminium in tetrahedral sites in mixed-layer 2:1 phyllosilicates hy solid-state high-resolution NMR Journal of Physical Chemistry 89 38803885 10.1021/j100264a023.CrossRefGoogle Scholar
Bauluz, B. Peacor, D.R. and Gonzalez Lopez, J.M., (2000) Transmission electron microscopy study of illitization in pelites from the Iherian Range, Spain: layer-hy-layer replacement? Clays and Clay Minerals 48 374384 10.1346/CCMN.2000.0480308.CrossRefGoogle Scholar
Bauluz, B. Peacor, D.R. and Ylagan, R.F., (2002) Transmission electron microscopy study of smectite illitization during hydrothermal alteration of a rhyolitic hyalo-clastite from Ponza, Italy Clays and Clay Minerals 50 157173 10.1346/000986002760832766.CrossRefGoogle Scholar
Christidis, G.E. and Eherl, D.D., (2003) Determination of layer-charge characteristics of smectites Clays and Clay Minerals 51 644655 10.1346/CCMN.2003.0510607.CrossRefGoogle Scholar
Claret, F. Sakharov, B.A. Drits, V.A. Velde, B. Meunier, A. Griffault, L. and Lanson, B., (2004) Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution Clays and Clay Minerals 52 515532 10.1346/CCMN.2004.0520501.CrossRefGoogle Scholar
Dong, H. Peacor, D.R. and Freed, R.L., (1997) Phase relations among smectite, R1 illite-smectite, and illite American Mineralogist 82 379391 10.2138/am-1997-3-416.CrossRefGoogle Scholar
Drits, V.A. and Merlino, S., (1997) Mixed-layer minerals Modular Aspects of Minerals Budapest Eötvös University Press 153190.CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray Diffraction by Disordered Lamellar Structures Berlin Springer-Verlag 10.1007/978-3-642-74802-8.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Sakharov, B.A. and Salyn, A.S., (1997) Sequence structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales, North Sea Clay Minerals 33 351371 10.1180/claymin.1997.032.3.03.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. and Salyn, A.L., (1997) Determination of the content and distribution of fixed ammonium in illite-smectite hy X-ray diffraction: Application to North Sea illite-smectite American Mineralogist 82 7987 10.2138/am-1997-1-210.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., (1950) Verlust der Austauschfahigeit von Lithiumionen an Bentonit durch Erhitzung Zeitschrift fur Anorganische Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Howard, S.A. Preston, K.D., Bish, D.L. and Post, J.E., (1989) Profile fitting of powder diffraction patterns Modem Powder Diffraction Washington, D.C. Mineralogical Society of America 217275 10.1515/9781501509018-011.CrossRefGoogle Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanism of hurial metamorphism of argillaceous sediments: Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A., (1984) Thermodynamic study of Na-K-Ca exchange reactions in vermiculite Clays and Clay Minerals 32 311319 10.1346/CCMN.1984.0320409.CrossRefGoogle Scholar
Inoue, A. and Utada, M., (1983) Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays and Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
Inoue, A. Minato, H. and Utada, M., (1978) Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga-Omono district Clay Science 5 123136.Google Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanahe, T., (1987) Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Inoue, A. Bouchet, A. Velde, B. and Meunier, A., (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals Clays and Clay Minerals 37 227234 10.1346/CCMN.1989.0370305.CrossRefGoogle Scholar
Inoue, A. Watanahe, T. Kohyama, N. and Brusewitz, A.M., (1990) Characterization of illitization of smectite in hentonite beds at Kinnekulle, Sweden Clays and Clay Minerals 34 241249 10.1346/CCMN.1990.0380302.CrossRefGoogle Scholar
Inoue, A. Hara, J. and Imai, A., (2001) Genesis of Na-series rock alteration widespread in the southeastern area of Hachimantai geothermal field: water-rock interactions driven hy descending groundwater and fossil seawater Shigen-Chishitsu (Journal of Society of Resource Geology, Japan) 51 101120.Google Scholar
Inoue, A. Meunier, A. and Beaufort, D., (2004) Illite-smectite mixed-layer minerals in felsic voclaniclastic rocks from drill cores, Kakkonda, Japan Clays and Clay Minerals 52 6684 10.1346/CCMN.2004.0520108.CrossRefGoogle Scholar
Jagodzinski, H., (1949) Eindimensionale fehlordnung in hristallen und ihr einfluss auf die Rontgeninterferenzen. I. Berechnung des fehlordnungsgrades au der Rontgen-intensitaten Acta Crystallographica 2 201207 10.1107/S0365110X49000552.CrossRefGoogle Scholar
Jakohsen, H.J. Nielsen, N.C. and Lindgreen, H., (1995) Sequences of charged sheets in rectorite American Mineralogist 80 247252 10.2138/am-1995-3-406.CrossRefGoogle Scholar
Keller, W.D. Reynolds, R.D. Jr. and Inoue, A., (1986) Morphology of clay minerals in the smectite-to-illite conversion series hy scanning electron microscopy Clays and Clay Minerals 34 187197 10.1346/CCMN.1986.0340209.CrossRefGoogle Scholar
Lagaly, G., (1979) The ‘layer charge’ of regular interstratified 2:1 clay minerals Clays and Clay Minerals 27 110 10.1346/CCMN.1979.0270101.CrossRefGoogle Scholar
Lagaly, G. and Mermut, A.R., (1994) Layer charge determination hy alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Colorado The Clay Minerals Society, Boulder 146.Google Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Lanson, B. and Champion, D., (1991) The I/S-to-illite reaction in the late stage diagenesis American Journal of Science 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Masuda, H. Peacor, D.R. and Dong, H., (2001) Transmission electron microscopy study of conversion of smectite to illite in mudstones of the Nankai Trough: Contrast with coeval bentonites Clays and Clay Minerals 49 109118 10.1346/CCMN.2001.0490201.CrossRefGoogle Scholar
Meunier, A. and Velde, B., (1989) Solid solution in illite/smectite mixed layer minerals and illite American Mineralogist 74 11061112.Google Scholar
Meunier, A. and Velde, B., (2004) Illite Berlin Springer 10.1007/978-3-662-07850-1.CrossRefGoogle Scholar
Meunier, A. Lanson, B. and Beaufort, D., (2000) Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for illite-smectite illitization in diagenetic environments: a synthesis Clay Minerals 35 573586 10.1180/000985500546891.CrossRefGoogle Scholar
Murakami, T. Inoue, A. Lanson, B. Meunier, A. and Beaufort, D., (2005) Illite-smectite mixed-layer minerals in hydrothermal alteration of volcanic rocks: II. One-dimensional HRTEM structure-images and formation mechanism Clays and Clay Minerals 53 440451 10.1346/CCMN.2005.0530502.CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Olives, J. Amouric, M. and Perhost, R., (2000) Mixed layering of illite-smectite: Results from high-resolution transmission electron microscopy and lattice-energy calculations Clays and Clay Minerals 48 282289 10.1346/CCMN.2000.0480215.CrossRefGoogle Scholar
Plançon, A., (2004) Consistent modeling of the XRD patterns of mixed-layer phyllosilicates Clays and Clay Minerals 52 4754 10.1346/CCMN.2004.0520106.CrossRefGoogle Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A. and Drits, V.A., (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting Clays and Clay Minerals 47 555566 10.1346/CCMN.1999.0470502.CrossRefGoogle Scholar
Środoń, J. Eherl, D D and Bailey, S.W., (1984) Illite Micas Washington D.C. Mineralogical Society of America 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar
Środoń, J. Elsass, F. MacHardy, W J and Morgan, D.J., (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158 10.1180/claymin.1992.027.2.01.CrossRefGoogle Scholar
Stixrude, L. and Peacor, D.R., (2002) First-principles study of illite-smectite and implications for clay mineral systems Nature 420 165168 10.1038/nature01155.CrossRefGoogle ScholarPubMed
Tillick, D.A. Peacor, D.R. and Mauk, J.L., (2001) Genesis of dioctahedral phyllosilicates during hydrothermal alteration of volcanic rocks: I. The Golden Cross epithermal ore deposit, New Zealand Clays and Clay Minerals 49 126140 10.1346/CCMN.2001.0490203.CrossRefGoogle Scholar
Vehlen, D.R. Guthrie, G.D. Livi, K.J.T. Reynolds, R.C. Jr., (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results Clays and Clay Minerals 38 113 10.1346/CCMN.1990.0380101.Google Scholar
Watanahe, T., (1988) The structure model of illite/smectite interstratified mineral and the diagram for its identification Clay Science 7 97114.Google Scholar
Wilson, M.J. and Wilson, M J, (1987) X-ray powder diffraction methods A Handbook of Determinative Methods in Clay Mineralogy UK Blackie, Glasgow 2698.Google Scholar
Yan, Y. Tillick, D.A. Peacor, D.R. and Simmons, S.F., (2001) Genesis of dioctahedral phyllosilicates during hydrothermal alteration of volcanic rocks: II. The Broadlands-Ohaaki hydrothermal system, New Zealand Clays and Clay Minerals 49 141155 10.1346/CCMN.2001.0490204.CrossRefGoogle Scholar