Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-03T02:46:37.165Z Has data issue: false hasContentIssue false

Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study

Published online by Cambridge University Press:  01 January 2024

Xiandong Liu
Affiliation:
State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Hankou Road 22, Nanjing 210093, PR China
Xiancai Lu*
Affiliation:
State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Hankou Road 22, Nanjing 210093, PR China
Rucheng Wang
Affiliation:
State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Hankou Road 22, Nanjing 210093, PR China
Huiqun Zhou
Affiliation:
State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Hankou Road 22, Nanjing 210093, PR China
Shijin Xu
Affiliation:
State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Hankou Road 22, Nanjing 210093, PR China
*
*E-mail address of corresponding author: xcljun@nju.edu.cn

Abstract

The structure and dynamics of alkylammonium-intercalated smectites were simulated using molecular dynamics employing the clayff-CVFF force field, the reliability of which was firstly validated for these systems. The layering behaviors of alkyl chains confirm the scenarios of the monolayer, transition and bilayer configurations for short, medium-length and long carbon tails, respectively. In the systems without water, the alkylammonium groups are all anchored firmly above the surface six-member rings through H bonds between ammonium hydrogen and surface oxygen, and the alkyl tails are a little more mobile. With water involved, some ammoniums are dragged out of the potential barriers of the six-member rings by water molecules through the strong H bonds between water oxygen and ammonium hydrogen. The intercalated water scarcely affects the basal spacing, alkyl chain layering or alkylammonium dynamics. It is also found that the systems with alkyl chains of 11 to 14 exhibit the greatest density, resulting in the extremely limited mobility of the intercalated species.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M.P. and Tildesley, D.J., (1987) Computer Simulation of Liquids Oxford, UK Clarendon Press.Google Scholar
Berendsen, H.J.C. Postma, J.P.M. van Gunsteren, W.F. Hermans, J. and Pullman, B., (1981) Interaction models for water in relation to protein hydration Intermolecular Forces Dordrecht, The Netherlands Riedel 331–342 10.1007/978-94-015-7658-1_21.Google Scholar
Boulet, P. Bowden, A.A. Coveney, P.V. and Whiting, A., (2003) Combined experimental and theoretical investigations of clay polymer nanocomposites: intercalation of single bifunctional organic compounds in Na+-montmorillonite and Na+-hectorite clays for the design of new materials Journal of Materials Chemistry 13 25402550 10.1039/B307752G.CrossRefGoogle Scholar
Carrizosa, M.J. Rice, P.J. Koskinen, W.C. Carrizosa, I. and Hermosin, M.D., (2004) Sorption of isoxaflutole and DKN on organoclays Clays and Clay Minerals 52 341349 10.1346/CCMN.2004.0520309.CrossRefGoogle Scholar
Chang, F-RC Skipper, N.T. and Sposito, G., (1997) Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates Langmuir 13 20742082 10.1021/la9603176.CrossRefGoogle Scholar
Cygan, R.T. (2001) Molecular modeling in mineralogy and geochemistry. Pp. 135 in: Molecular Modeling Theory: Applications in the Geosciences (Cygan, R.T. and Kubicki, J.D., editors). Reviews in Mineralogy and Geochemistry, 42, Mineralogical Society of America.CrossRefGoogle Scholar
Cygan, R.T. Guggenheim, S. and van Groos, A.F.K., (2004) Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay Journal of Physical Chemistry B 108 1514115149 10.1021/jp037900x.CrossRefGoogle Scholar
Cygan, R.T. Liang, J.-J. and Kalinichev, A.G., (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field Journal of Physical Chemistry B 108 12551266 10.1021/jp0363287.CrossRefGoogle Scholar
Dauber-Osguthorpe, P. Roberts, V.A. Osguthorpe, D.J. Wolff, J. Genest, M. and Hagler, A.T., (1988) Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system Proteins: Structure, Function and Genetics 4 3147 10.1002/prot.340040106.CrossRefGoogle ScholarPubMed
Frenkel, D. and Smit, B., (2002) Understanding Molecular Simulation 2nd New York Academic Press.Google Scholar
Greathouse, J.A. Stellalevinsohn, H.R. Denecke, M.A. Bauer, A. and Pabalan, R.T., (2005) Uranyl surface complexes in a mixed-charge montmorillonite: Monte Carlo computer simulation and polarized XAFS results Clays and Clay Minerals 53 278286 10.1346/CCMN.2005.0530307.CrossRefGoogle Scholar
Greenwell, H.C. Harvey, M.J. Boulet, P. Bowden, A.A. Coveney, P.V. and Whiting, A., (2005) Interlayer structure and bonding in nonswelling primary amine intercalated clays Macromolecules 38 61896200 10.1021/ma0503817.CrossRefGoogle Scholar
Hackett, E. Manias, E. and Giannelis, E.P., (1998) Molecular dynamics simulations of organically modified layered silicates Journal of Chemical Physics 108 74107415 10.1063/1.476161.CrossRefGoogle Scholar
He, H.P. Galy, J. and Gerard, J.F., (2005) Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA(+)/montmorillonite hybrids Journal of Physical Chemistry B 109 1330113306 10.1021/jp0517495.CrossRefGoogle ScholarPubMed
Heinz, H. Castelijns, H.J. and Suter, U.W., (2003) Structure and phase transitions of alkyl chains on mica Journal of the American Chemical Society 125 95009510 10.1021/ja021248m.CrossRefGoogle ScholarPubMed
Heinz, H. Koerner, H. Anderson, K.L. Vaia, R.A. and Farmer, B.L., (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite Chemistry of Materials 17 56585669 10.1021/cm0509328.CrossRefGoogle Scholar
Heinz, H. Vaia, R.A. Krishnamoorti, R. and Farmer, B.L., (2007) Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, head group structure, and cation exchange capacity Chemistry of Materials 19 5968 10.1021/cm062019s.CrossRefGoogle Scholar
Horn, R.G. and Israelachvili, J.N., (1981) Direct measurement of forces due to structure in a non-polar liquid Journal of Chemical Physics 75 14001411 10.1063/1.442146.CrossRefGoogle Scholar
Janek, M. and Smrcok, L., (1999) Application of an internal standard technique by transmission X-ray diffraction to assess layer charge of a montmorillonite by using the alkylammonium method Clays and Clay Minerals 47 113118 10.1346/CCMN.1999.0470201.CrossRefGoogle Scholar
Jorgensen, W.L. and Gao, J.L., (1986) Monte Carlo simulations of the hydration of ammonium and carboxylate ions Journal of Physical Chemistry 90 21742182 10.1021/j100401a037.CrossRefGoogle Scholar
Jorgensen, W.L. Madura, J.D. and Swenson, C.J., (1984) Optimized intermolecular potential functions for liquid hydrocarbons Journal of the American Chemical Society 106 66386646 10.1021/ja00334a030.CrossRefGoogle Scholar
Kirkpatrick, R.J. Kalinichev, A.G. Hou, X. and Struble, L., (2005) Experimental and molecular dynamics modeling studies of interlayer swelling: water incorporation in kanemite and ASR gel Materials and Structures 38 449458 10.1007/BF02482141.CrossRefGoogle Scholar
Kumar, P.P. Kalinichev, A.G. and Kirkpatrick, R.J., (2006) Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides: Insights from molecular dynamics simulation of citrate-intercalated hydrotalcite Journal of Physical Chemistry B 110 38413844 10.1021/jp057069j.CrossRefGoogle Scholar
Lagaly, G., (1981) Characterization of clays by organic compounds Clay Minerals 16 121 10.1180/claymin.1981.016.1.01.CrossRefGoogle Scholar
Lagaly, G. and Mermut, A., (1994) Layer charge determination by alkylammonium ions Layer Charge Characteristics of Clays Boulder, Colorado The Clay Minerals Society 146.Google Scholar
Lagaly, G. and Weiss, A., (1970) Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen. II. Paraffinähnliche Strukturen bei den n-Alkylammonium-Schichtsilicaten mit hoher Schichtladung (Glimmer) Kolloid Z. Z. Polymere 237 364368 10.1007/BF02086849.CrossRefGoogle Scholar
Lagaly, G. Ogawa, M. Dekany, I., Bergaya, F. Theng, B.K.G. and Lagaly, G., (2006) Clay mineral organic interactions Handbook of Clay Science Amsterdam Elsevier 309377 10.1016/S1572-4352(05)01010-X.CrossRefGoogle Scholar
Laird, D.A. and Mermut, A.R., (1994) Evaluation of the structural formula and alkylammonium methods of determining layer charge Layer Charge Characteristics of Clays Boulder, Colorado The Clay Minerals Society 80103.Google Scholar
Laird, D.A. Scott, A.D. and Fenton, T.E., (1989) Evaluation of the alkylammonium method of determining layer charge Clays and Clay Minerals 37 4146 10.1346/CCMN.1989.0370105.CrossRefGoogle Scholar
Liu, X.D. and Lu, X.C., (2006) A thermodynamic understanding of clay-swelling inhibition by potassium ions Angewandte Chemie International Edition 45 63006303 10.1002/anie.200601740.CrossRefGoogle ScholarPubMed
Mayo, S.L. Olafson, B.D. Goddard, W.A. III, (1990) DREIDING: a generic force field for molecular simulations Journal of Physical Chemistry 94 88978909 10.1021/j100389a010.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., (2001) Baseline studies of The Clay Minerals Society Source Clays: layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397 10.1346/CCMN.2001.0490506.CrossRefGoogle Scholar
Ohtaki, H. and Radnai, T., (1993) Structure and dynamics of hydrated ions Chemical Reviews 93 11571204 10.1021/cr00019a014.CrossRefGoogle Scholar
Osman, M.A. Seyfang, G. and Suter, U.W., (2000) Two-dimensional melting of alkane monolayers ionically bonded to mica Journal of Physical Chemistry B 104 44334439 10.1021/jp993448z.CrossRefGoogle Scholar
Osman, M.A. Ernst, M. Meier, B.H. and Suter, U.W., (2002) Structure and molecular dynamics of alkane monolayers self-assembled on mica platelets Journal of Physical Chemistry B 106 653662 10.1021/jp0132376.CrossRefGoogle Scholar
Osman, M.A. Ploetze, M. and Skrabal, P., (2004) Structure and properties of alkylammonium monolayers self-assembled on montmorillonite platelets Journal of Physical Chemistry B 108 25802588 10.1021/jp0366769.CrossRefGoogle Scholar
Perry, T.D. Cygan, R.T. and Mitchell, R., (2006) Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces Geochimica et Cosmochimica Acta 70 35083532 10.1016/j.gca.2006.04.023.CrossRefGoogle Scholar
Plimpton, S.J., (1995) Fast parallel algorithms for short-range molecular dynamics Journal of Computational Physics 117 119 10.1006/jcph.1995.1039.CrossRefGoogle Scholar
Refson, K. Skipper, N.T. McConnell, J.D.C., Manning, D.A.C. Hall, P.L. and Hughes, C.R., (1993) Molecular dynamics simulation of water mobility in smectites Geochemistry of Clay-Pore Fluid Interactions London Chapman & Hall 6377.Google Scholar
Skipper, N.T. Chang, F.-R. and Sposito, G., (1995) Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology Clays and Clay Minerals 43 294303 10.1346/CCMN.1995.0430304.CrossRefGoogle Scholar
Skipper, N.T. Lock, P.A. Titiloye, J.O. Swenson, J. Mirza, Z.A. Howells, W.S. and Fernandez-Alonso, F., (2006) The structure and dynamics of 2-dimensional fluids in swelling clays Chemical Geology 230 182196 10.1016/j.chemgeo.2006.02.023.CrossRefGoogle Scholar
Suresh, R. Vasudevan, S. and Ramanathan, K.V., (2003) Dynamics of methylene chains in an intercalated surfactant bilayer by solid-state NMR spectroscopy Chemical Physics Letters 371 118124 10.1016/S0009-2614(03)00218-5.CrossRefGoogle Scholar
Tambach, T.J. Hensen, E.J.M. and Smit, B.J., (2004) Molecular simulations of swelling clay minerals Journal of Physical Chemistry B 108 75867596 10.1021/jp049799h.CrossRefGoogle Scholar
Tambach, T.J. Boek, E.S. and Smit, B., (2006) Molecular order and disorder of surfactants in clay nanocomposites Physical Chemistry Chemical Physics 8 27002702 10.1039/b601373b.CrossRefGoogle ScholarPubMed
Teleman, O. Jonsson, B. and Engstrom, S., (1987) A molecular dynamic simulation of a water model with intramolecular degrees of freedom Molecular Physics 60 193203 10.1080/00268978700100141.CrossRefGoogle Scholar
Vaia, R.A. Teukolsky, R.K. and Giannelis, E.P., (1994) Interlayer structure and molecular environment of alkylammonium layered silicates Chemistry of Materials 6 10171022 10.1021/cm00043a025.CrossRefGoogle Scholar
Wang, J.W. Kalinichev, A.G. and Kirkpatrick, R.J., (2004) Molecular modeling of water structure in nano-pores between brucite (001) surfaces Geochimica et Cosmochimica Acta 68 33513365 10.1016/j.gca.2004.02.016.CrossRefGoogle Scholar
Wang, J.W. Kalinichev, A.G. and Kirkpatrick, R.J., (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study Geochimica et Cosmochimica Acta 70 562582 10.1016/j.gca.2005.10.006.CrossRefGoogle Scholar
Wang, L.Q. Liu, J. Exarhos, G.J. Flanigan, K.Y. and Bordia, R., (2000) Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR Journal of Physical Chemistry B 104 28102816 10.1021/jp993058c.CrossRefGoogle Scholar
Weiss, A., (1963) Organic derivatives of mica-type layer silicates Angewandte Chemie International Edition 2 134144 10.1002/anie.196301341.CrossRefGoogle Scholar
Zeng, Q.H. Yu, A.B. Lu, G.Q. and Standish, R.K., (2003) Molecular dynamics simulation of organic-inorganic nanocomposites: the layering behavior and interlayer structure of organoclays Chemistry of Materials 15 47324738 10.1021/cm0342952.CrossRefGoogle Scholar
Zeng, Q.H. Yu, A.B. Lu, G.Q. and Standish, R.K., (2004) Molecular dynamics simulation of the structural and dynamic properties of organoclay Journal of Physical Chemistry B 108 1002510033 10.1021/jp037245t.CrossRefGoogle Scholar
Zhu, J.X. He, H.P. Zhu, L.Z. Wen, X.Y. and Deng, F., (2005) Characterization of organic phases in the interlayer of montmorillonite using FTIR and C-13 NMR Journal of Colloid and Interface Science 286 239244 10.1016/j.jcis.2004.12.048.CrossRefGoogle Scholar