Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-16T11:33:02.606Z Has data issue: false hasContentIssue false

The Interlayer Structure of La-Vermiculite

Published online by Cambridge University Press:  28 February 2024

Phillip G. Slade
Affiliation:
CSIRO Land and Water, Glen Osmond, South Australia 5064
Peter G. Self
Affiliation:
Ian Wark Research Institute, University of South Australia, The Levels, South Australia 5095
James P. Quirk
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia 6009

Abstract

The structure of the interlayer cation-water system in La-vermiculite with a unit cell of a = 5.33(5), b = 9.18(6), c = 15.13(9) Å and β = 96.82(7)° has been determined in space group C2/m. Under ambient conditions, the interlayer La cations are distributed on a 3a × b superlattice which disappears on dehydration but returns on rehydration. The basal spacing does not change during the dehydration/rehydration process. The character of the superlattice spots indicate that the cation-water system, at ambient conditions, is ordered over relatively large domains. The La cations are surrounded by 8 neighboring water molecules in a distorted cubic arrangement. The spaces between the La-water clusters are occupied by triads of water molecules that are relatively mobile.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J.F. and Gatineau, L., 1980 Structure de l’espace interlamellaire de la vermiculite Mg bicouche Clay Miner 15 2535 10.1180/claymin.1980.015.1.03.CrossRefGoogle Scholar
Alcover, J.F. Gatineau, L. and Méring, J., 1973 Exchangeable cation distribution in nickel and magnesium vermiculite Clays Clay Miner 21 131136 10.1346/CCMN.1973.0210209.CrossRefGoogle Scholar
Baerlocher, C. Hepp, A. and Meier, W.M., 1977 DLS-76, a program for the simulation of crystal structures by geometric refinement Zürich, Switzerland Institute of Crystallography and Petrography.Google Scholar
Bernal, J.D. and Fowler, R.H., 1933 A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions J Chem Phys 1 515548 10.1063/1.1749327.CrossRefGoogle Scholar
Bonot-Courtois, C. and Jaffrezic-Renault, N., 1982 Etudes des échanges entre terres rares et cations interfoliaires de deux argiles Clay Miner 17 409420 10.1180/claymin.1982.017.4.04.CrossRefGoogle Scholar
Bruque, D. Mozas, T. and Rodriguez, A., 1980 Factors influencing retention of lanthanide ions by montmorillonite Clay Miner 15 413420 10.1180/claymin.1980.015.4.08.CrossRefGoogle Scholar
Busing, W.R., Martin, K.O. and Levy, H.A.. 1962. ORFLS, a Fortran crystallographic least-squares refinement program. Oak Ridge Natl Lab Tech Man 305. 75 p.Google Scholar
de la Calle, C., 1977 Structure des vermiculites, facteurs conditionnant les mouvements des feuillets [Ph.D. thesis] Paris Univ P et M Curie.Google Scholar
Cruickshank, D.W.J. Pilling, D.W. Bujosa, A. Lovell, F.M. and Truter, M.R., 1961 Computing methods in the phase problem Oxford Pergamon Pr.Google Scholar
Jones, D.J. Rozière, J. Olivera-Pastor, P. Rodriguiez-Castellon, E. and Jimènez-Löpeza, A., 1991 Local environment of intercalated lanthanide ions in vermiculite J Chem Soc, Faraday Trans 87 18 30773081 10.1039/FT9918703077.CrossRefGoogle Scholar
Laufer, F. Yarivc, S. and Steinberg, M., 1984 The adsorption of quadrivalent cerium by kaolinite Clay Miner 19 137149 10.1180/claymin.1984.019.2.02.CrossRefGoogle Scholar
Mathieson, A. and Walker, G.F., 1954 Crystal structure of mag-nesium-vermiculite Am Mineral 39 231255.Google Scholar
Miller, S.E. Heat, G.R. and Gonzalez, R.D., 1982 Effects of temperature on the sorption of lanthanides by montmorillonite Clays Clay Miner 30 111122 10.1346/CCMN.1982.0300205.CrossRefGoogle Scholar
Norrish, K. and Serratosa, J.M., 1973 Factors in the weathering of mica to vermiculite Proc Int Clay Conf; 1972; Madrid, Spain. Division de Ciencias, CSIC 417432.Google Scholar
Olivera-Pastor, P. Rodríguez-Castillón, E. and Rodríguez García, A., 1988 Uptake of lanthanides by vermiculite Clays Clay Miner 36 6872 10.1346/CCMN.1988.0360109.CrossRefGoogle Scholar
Pauling, L., 1960 The nature of the chemical bond New York Cornell Univ Pr 511540.Google Scholar
Shirozu, J. and Bailey, S.N., 1966 Crystal structure of a two layer Mg-vermiculite Am Mineral 52 1124.Google Scholar
Slade, P.G. Dean, C. Schultz, P.K. and Self, P.G., 1987 Crystal structure of a vermiculite-anilinium intercalate Clays Clay Miner 35 177188 10.1346/CCMN.1987.0350303.CrossRefGoogle Scholar
Slade, P.G. Schultz, P.K. and Tiekink, E.R.T., 1989 Structure of a 1, 4-diazabicyclo [2,2,2] octane-vermiculite intercalate Clays Clay Miner 37 8188 10.1346/CCMN.1989.0370110.CrossRefGoogle Scholar
Slade, P.G. and Stone, P.A., 1983 Structure of a vermiculite-aniline intercalate Clays Clay Miner 31 200206 10.1346/CCMN.1983.0310305.CrossRefGoogle Scholar
Slade, P.G. Stone, P.A. and Radoslovich, E.W., 1985 Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites Clays Clay Miner 33 5161 10.1346/CCMN.1985.0330106.CrossRefGoogle Scholar
Slade, P.G. and Quirk, J.P., 1991 The limited crystalline swelling of smectites in CaCl2, MgCl2, and LaCl3 solutions J Colloid Interface Sci 144 1826 10.1016/0021-9797(91)90233-X.CrossRefGoogle Scholar