Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-18T17:28:04.756Z Has data issue: false hasContentIssue false

NovaSil Clay for the Protection of Humans and Animals from Aflatoxins and Other Contaminants

Published online by Cambridge University Press:  01 January 2024

Timothy D. Phillips*
Affiliation:
Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
Meichen Wang
Affiliation:
Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
Sarah E. Elmore
Affiliation:
Environmental Toxicology Department, University of California, Davis, CA 95616, USA
Sara Hearon
Affiliation:
Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
Jia-Sheng Wang
Affiliation:
Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA

Abstract

Aflatoxin contamination of diets results in disease and death in humans and animals. The objective of the present paper was to review the development of innovative enterosorption strategies for the detoxification of aflatoxins. NovaSil clay (NS) has been shown to decrease exposures to aflatoxins and prevent aflatoxicosis in a variety of animals when included in their diets. Results have shown that NS clay binds aflatoxins with high affinity and high capacity in the gastrointestinal tract, resulting in a notable reduction in the bioavailability of these toxins without interfering with the utilization of vitamins and other micronutrients. This strategy is already being utilized as a potential remedy for acute aflatoxicosis in animals and as a sustainable intervention via diet. Animal and human studies have confirmed the apparent safety of NS and refined NS clay (with uniform particle size). Studies in Ghanaians at high risk of aflatoxicosis have indicated that NS (at a dose level of 0.25% w/w) is effective at decreasing biomarkers of aflatoxin exposure and does not interfere with levels of serum vitamins A and E, iron, or zinc. A new spinoff of this strategy is the development and use of broad-acting sorbents for the mitigation of environmental chemicals and microbes during natural disasters and emergencies. In summary, enterosorption strategies/therapies based on NS clay are promising for the management of aflatoxins and as sustainable public health interventions. The NS clay remedy is novel, inexpensive, and easily disseminated.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbes, S., Ouanes, Z., Salah-Abbes, J. B., Houas, Z., Oueslati, R., Bacha, H., & Othman, O. (2006). The protective effect of hydrated sodium calcium aluminosilicate against haematological, biochemical and pathological changes induced by Zearalenone in mice. Toxicon, 47(5), 567574.CrossRefGoogle ScholarPubMed
Abbes, S., Salah-Abbes, J. B., Abdel-Wahhab, M. A., & Ouslati, R. (2009). Immunotoxicological and biochemical effects of aflatoxins in rats prevented by Tunisian montmorillonite with reference to HSCAS. Journal of Immunopharmacology and Immunotoxicology, 32(3), 514522.CrossRefGoogle Scholar
Abdel-Wahhab, M. A., Nada, S. A., Farag, I. M., Abbas, N. F., & Amra, H. A. (1998). Potential Protective Effect of HSCAS and Bentonite Against Dietary Aflatoxicosis in Rat: with Special Reference to Chromosomal Aberrations. Natural Toxins, 6, 211218.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Abo-Norag, M., Edrington, T., Kubena, L. F., Harvey, R. B., & Phillips, T. D. (1995). Influence of a hydrated sodium calcium aluminosilicate and virginiamycin on aflatoxicosis in broiler chicks. Poultry Science, 74(4), 626632.CrossRefGoogle ScholarPubMed
Afriyie-Gyawu, E., Mackie, J., Dash, B., Wiles, M., Taylor, J., Huebner, H., Tang, L., Guan, H., Wang, J. S., & Phillips, T. D. (2005). Chronic toxicological evaluation of dietary NovaSil Clay in Sprague-Dawley rats. Journal of Food Additives & Contaminants, 22(3), 259269.CrossRefGoogle ScholarPubMed
Afriyie-Gyawu, E., Wang, Z., Ankrah, N. A., Xu, L., Johnson, N. M., Tang, L., Guan, H., Huebner, H. J., Jolly, P. E., Ellis, W. O., Taylor, R., Brattin, B., Ofori-Adjei, D., Williams, J. H., Wang, J. S., & Phillips, T. D. (2008). NovaSil clay does not affect the concentrations of vitamins A and E and nutrient minerals in serum samples from Ghanaians at high risk for aflatoxicosis. Journal of Food Additives & Contaminants, 25(7), 872884.CrossRefGoogle ScholarPubMed
Araba, M. & Wyatt, R. (1991). Effects of sodium bentonite, hydrated sodium calcium aluminosilicate NovaSil™, and charcoal on aflatoxicosis in broiler chickens. Poultry Science, 70(6), 611.Google Scholar
Awuor, A. O., Yard, E., Daniel, J. H., Martin, C., Bii, C., Romoser, A., Oyugi, E., Elmore, S., Amwayi, S., Vulule, J., Zitomer, N. C., Rybak, M. E., Phillips, T. D., Montgomery, J. M., & Lewis, L. S. (2016). Evaluation of the efficacy, acceptability and palatability of calcium montmorillonite clay used to reduce aflatoxin B1 dietary exposure in a crossover study in Kenya. Journal of Food Additives and Contaminants, 34(1), 93102.CrossRefGoogle Scholar
Bauer, J. (1994). Möglichkeiten zur Entgiftung mykotoxinhaltiger Futtermittel. MonatshefteVeterinarmed, 49, 175181.Google Scholar
Bingham, A. K., Huebner, H. J., Phillips, T. D., & Bauer, J. E. (2004). Identification and reduction of urinary aflatoxin metabolites in dogs. Food and Chemical Toxicology, 42(11), 18511858.CrossRefGoogle ScholarPubMed
Bonna, R. J., Aulerich, R. J., Bursian, S. J., Poppenga, R. H., Braselton, W. E., & Watson, G. L. (1991). Efficacy of hydrated sodium calcium aluminosilicate and activated charcoal in reducing the toxicity of dietary aflatoxin to mink. Archives of Environmental Contamination and Toxicology, 20(3), 441447.CrossRefGoogle ScholarPubMed
Brown, K., Mays, T., Romoser, A., Marroquin-Cardona, A., Mitchell, N., Elmore, S., & Phillips, T. (2014). Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent. Journal of Applied Toxicology, 34(1), 4048.CrossRefGoogle ScholarPubMed
Bursian, S.J., Aulerich, R. J., Cameron, J. K., Ames, N. K., & Steficek, B. A. (1992). Efficacy of hydrated sodium calcium aluminosilicate in reducing the toxicity of dietary zearalenone to mink. Journal of Applied Toxicology, 12(2), 8590.CrossRefGoogle ScholarPubMed
Callahan, G. N. (2003). Eating dirt. Emerging Infectious Diseases, 9(8), 10161021.CrossRefGoogle ScholarPubMed
Chestnt, A. B., Anderson, P. D., Cochran, M. A., Fribourg, H. A., & Gwinn, K. D. (1992). Effects of hydrated sodium calcium aluminosilicate on fescue toxicosis and mineral absorption. Journal of Animal Science, 70(9), 28382846.CrossRefGoogle Scholar
Chung, T. K., Ekdman, J. W., & Baker, D. H. (1990a). Hydrated Sodium Calcium Aluminosilicate: Effects on Zinc, Manganese, Vitamin A, and Riboflavin Utilization. Poultry Science, 69(8), 13641370.CrossRefGoogle ScholarPubMed
Chung, T. K., Funk, M. A., & Baker, D. H. (1990b). L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. Journal of Nutrition, 120(2), 158165.CrossRefGoogle ScholarPubMed
Colvin, B. M., Sangster, L. T., Haydon, K. D., Beaver, R. W., & Wilson, D. M. (1989). Effect of a high affinity aluminosilicate sorbent on prevention of aflatoxicosis in growing pigs. Veterinary and Human Toxicology, 31(1), 4648.Google ScholarPubMed
Davidson, J. N., Babish, J. G., Delaney, K. A., Taylor, D. R., & Phillips, T. D. (1987). Hydrated sodium calcium aluminosilicate decrease the bioavailability of aflatoxin in the chicken. Poultry Science, 66(Suppl. 1), 89.Google Scholar
Deng, Y., Velazquez, A. L. B., Billes, F., & Dixon, J. B. (2010). Bonding mechanisms between aflatoxin B1 and smectite. Applied Clay Science, 50(1), 9298.CrossRefGoogle Scholar
Doerr, J. A. (1989). Effect of an aluminosilicate on broiler chickens during aflatoxicosis. Poultry Science, 68(45).Google Scholar
Dupont, C., Foo, J. L. K., Garnier, P., Moore, N., Mathiex-Fortunet, H., & Salazar-Lindo, E. (2009). Oral Diosmectite Reduces Stool Output and Diarrhea Duration in Children With Acute Watery Diarrhea. Clinical Gastroenterology and Hepatology, 7(4), 456462.CrossRefGoogle ScholarPubMed
Dwyer, M. R., Kubena, L. F., Harvey, R. B., Mayura, K., Sarr, A. B., Buckley, S., Bailey, R. H., & Phillips, T. D. (1997). Effects of inorganic adsorbents and cyclopiazonic acid in broiler chickens. Poultry Science, 76(8), 11411149.CrossRefGoogle ScholarPubMed
Edrington, T. S., Sarr, A. B., Kubena, L. F., Harvey, R. B., & Phillips, T. D. (1996). Hydrated sodium calcium aluminosilicate (HSCAS), acidic HSCAS, and activated charcoal reduce urinary excretion of aflatoxin M1 in turkey poults. Lack of effect by activated charcoal on aflatoxicosis. Toxicology Letter, 89(2), 115122.CrossRefGoogle ScholarPubMed
Elmore, S. E., Mitchell, N., Mays, T., Brown, K., Marroquin-Cardona, A., Romoser, A., & Phillips, T. D. (2014). Common African cooking processes do not affect the aflatoxin binding efficacy of refined calcium montmorillonite clay. Food Control, 37, 2732.CrossRefGoogle Scholar
Giles, C. H., Macewan, T. H., Nakhwa, S. N., & Smith, D. (1960). Studies in Adsorption. Part XI.* A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. Journal of the Society of Dyers and Colourists, 39733993.Google Scholar
Giles, C. H., D'Silva, A. P., & Easton, I. A. (1974a). A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. Journal of Colloid and Interface Science, 47(3), 766778.CrossRefGoogle Scholar
Giles, C. H., Smith, D., & Huitson, A. (1974b). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47(3), 755765.CrossRefGoogle Scholar
Gowda, N. K. S., Ledoux, D. R., Rottinghaus, G. E., Bermudez, A. J., & Chen, Y. C. (2008). Efficacy of Turmeric (Curcuma longa), Containing a Known Level of Curcumin, and a Hydrated Sodium Calcium Aluminosilicate to Ameliorate the Adverse Effects of Aflatoxin in Broiler Chicks. Poultry Science, 87(6), 11251130.CrossRefGoogle Scholar
Grant, P.J., & Phillips, T. P. (1998). Isothermal Adsorption ofAflatoxin B1 on HSCAS Clay. Journal of Agricultural and Food Chemistry, 46(2), 599605.CrossRefGoogle ScholarPubMed
Harvey, R. B., Huff, W. E., Kubena, L. F., Corrier, D. E., & Phillips, T. D. (1988). Progression of aflatoxicosis in growing barrows. American Journal of Veterinary Research, 49(4), 482487.Google ScholarPubMed
Harvey, R. B., Kubena, L. F., Phillips, T. D., Corrier, D. E., Elissalde, M. H., & Huff, W. E. (1991a). Diminution of aflatoxin toxicity to growing lambs by dietary supplementation with hydrated sodium calcium aluminosilicate. American Journal of Veterinary Research, 52(1), 152156.Google ScholarPubMed
Harvey, R. B., Phillips, T. D., Ellis, J. A., Kubena, L. F., Huff, W. E., & Petersen, H. D. (1991b). Effects on aflatoxin M1 residues in milk by addition of hydrated sodium calcium aluminosilicate to aflatoxincontaminated diets of dairy cows. American Journal of Veterinary Research, 52(9), 15561559.Google ScholarPubMed
Harvey, R. B., Kubena, L. F., Elissalde, M. H., Corrier, D. E., & Phillips, T. D. (1994). Comparison of 2 Hydrated Sodium-Calcium Aluminosilicate Compounds to Experimentally Protect Growing Barrows from Aflatoxicosis. Journal of Veterinary Diagnostic Investigation, 6(1), 8892.CrossRefGoogle ScholarPubMed
Huff, W. E., Kubena, L. F., Harvey, R. B., & Phillips, T. D. (1992). Efficacy of Hydrated Sodium Calcium Aluminosilicate to Reduce the Individual and Combined Toxicity of Aflatoxin and Ochratoxin A. Poultry Science, 71(1), 6469.CrossRefGoogle ScholarPubMed
Jayaprakash, M., Gowda, R. N. S., Vijayasarathi, S. K., & Seshadri, S. J. (1992). Adsorbent efficacy of hydrated sodium calcium aluminosilicate in induced aflatoxicosis in broilers. Indian Journal of Veterinary Pathology, 16, 102105.Google Scholar
Jolly, P., Jiang, Y., Ellis, W., Awuah, R., Nnedu, O., Phillips, T., Wang, J., Afriyie-Gyawu, E., Tang, L., Person, S., Williams, J., & Jolly, C. (2006). Determinants of aflatoxin levels in Ghanaians: Sociodemographic factors, knowledge of aflatoxin and food handling and consumption practices. International Journal of Hygiene and Environmental Health, 209(4), 345358.CrossRefGoogle ScholarPubMed
Kensler, T. W., Egner, P. A., Wang, J., Zhu, Y., Zhang, B., Lu, P., Chen, J., Qian, G., Kuang, S., Jackson, P. E., Gangge, S. J., Jacobson, L. P., Munoz, A., & Groopman, J. D. (2004). Chemoprevention of Hepatocellular Carcinoma in Aflatoxin Endemic Areas. Gastroenterology, 127, 310318.CrossRefGoogle ScholarPubMed
Kinniburgh, D. G. (1986). General Purpose Adsorption Isotherms. Environmental Science & Technology, 20, 895904.CrossRefGoogle ScholarPubMed
Kubena, L. F., Harvey, R. B., Huff, W. E., Corrier, D. E., & Phillips, T. D. (1990a). Efficacy of a Hydrated Sodium Calcium Aluminosilicate to Reduce the Toxicity of Aflatoxin and T-2 Toxin. Poultry Science, 69(7), 10781086.CrossRefGoogle ScholarPubMed
Kubena, L. F., Harvey, R. B., Phillips, T. D., Corrier, D. E., & Huff, W. E. (1990b). Diminution of aflatoxicosis in growing chickens by the dietary addition of a hydrated, sodium calcium aluminosilicate. Poultry Science, 69(5), 727735.CrossRefGoogle ScholarPubMed
Kubena, L. F., Huff, W. E., Harvey, R. B., Yersin, A. G., Elissalde, M. H., Witzel, D. A., Giroir, L. E., Phillips, T. D., & Petersen, H. D. (1991). Effects of a hydrated sodium calcium aluminosilicate on growing turkey poults during aflatoxicosis. Poultry Science, 70(8), 18231830.CrossRefGoogle ScholarPubMed
Kubena, L. F., Harvey, R. B., Huff, W. E., Elissalde, M. H., Yersin, A. G., Phillips, T. D., & Rottinghaus, G. E. (1993). Efficacy of a Hydrated Sodium Calcium Aluminosilicate to Reduce the Toxicity of Aflatoxin and Diacetoxyscirpenol. Poultry Science, 72(1), 5159.CrossRefGoogle ScholarPubMed
Ledoux, D. R., Rottinghaus, G. E., Bermudez, A. J., & Alonso-Debolt, M. (1999). Efficacyof a hydrated sodium calcium aluminosilicate to ameliorate the toxic effects of aflatoxin in broiler chicks. Poultry Science, 78(21), 204210.CrossRefGoogle Scholar
Lindemann, M. D., Blodgett, D. J., Kornegay, E. T., & Schurig, G. G. (1993). Potential ameliorators of aflatoxicosis in weanling/growing swine. Journal of Animal Science, 71(1), 171178.CrossRefGoogle ScholarPubMed
Liu, Y. L., Meng, G. Q., Wang, H. R., Zhu, H. L., Hou, Y. Q., Wang, W. J., & Ding, B. Y. (2010). Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed. Journal of British Poultry Science, 52(2), 255263.CrossRefGoogle Scholar
Maki, C. R., Monteiro, A. P. A., Elmore, S. E., Tao, S., Bernard, J. K., Harvey, R. B., Romoser, A. A., & Phillips, T. D. (2016a). Calcium montmorillonite clay in dairy feed reduces aflatoxin concentrations in milk without interfering with milk quality, composition or yield. Animal Feed Science and Technology, 214, 130135.CrossRefGoogle Scholar
Maki, C. R., Thomas, A. D., Elmore, S. E., Romoser, A. A., Harvey, R. B., Ramirez-Ramirez, H. A., & Phillips, T. D. (2016b). Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. Journal of Dairy Science, 99(2), 10391046.CrossRefGoogle ScholarPubMed
Maki, C. R., Allen, S., Wang, M., Ward, S. H., Rude, B. J., Bailey, H. R., Harvey, R. B., & Phillips, T. D. (2017). Calcium Montmorillonite Clay for the Reduction of Aflatoxin Residues in Milk and Dairy Products. Journal of Diary and Veterinary Scicences, 2(3), 18.Google Scholar
Marroquín-Cardona, A., Deng, Y., Taylor, J. F., Hallmark, C. T., Johnson, N. M., & Phillips, T. D. (2009). In vitro and in vivo characterization of mycotoxin-binding additives used for animal feeds in Mexico. Food Additives & Contaminants: Part A, 26(5), 733743.CrossRefGoogle ScholarPubMed
Marroquin-Cardona, A., Deng, Y., Garcia-Mazcorro, J. F., Johnson, N. M., Mitchell, N. J., Tang, L., Robinson, A., Taylor, J. F., Wang, J. S., & Phillips, T. D. (2010). Characterization and safety of uniform particle size NovaSil clay as a potential aflatoxin enterosorbent. Applied Clay Science, 54(3–4), 248257.CrossRefGoogle Scholar
Mayura, K., Abdel-Wahhab, M. A., McKenzie, K. S., Sarr, A. B., Edwards, J. F., Naguib, K., & Phillips, T. D. (1998). Prevention of maternal and developmental toxicity in rats via dietary inclusion of common aflatoxin sorbents: potential for hidden risks. Toxicolgical Sciences, 41(2), 175182.CrossRefGoogle ScholarPubMed
Miller, J. D., Schaafsma, A. W., Bhatnagar, D., Bondy, G., Carbone, I., Harris, L. J., Harrison, G., Munkvold, G. P., Oswald, I. P., Pestka, J. J., Sharpe, L., Sumarah, M. W., Tittlemier, S. A., & Zhou, T. (2014). Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. World Mycotoxin Journal, 7(1), 6382.CrossRefGoogle Scholar
Mitchell, N. J., Kumi, J., Johnson, N. M., Dotse, E., Marroquin-Cardona, A., Wang, J. S., Jolly, P. E., Ankrah, N. A., & Phillips, T. D. (2013a). Reduction in the urinary aflatoxin M-1 biomarker as an early indicator of the efficacy of dietary interventions to reduce exposure to aflatoxins. Biomarkers, 18, 391398.CrossRefGoogle ScholarPubMed
Mitchell, N. J., Xue, K. S., Lin, S., Marroquin-Cardona, A., Brown, K. A., Elmore, S. E., Tang, L., Romoser, A., Gelderblom, W., Wang, J. S., & Phillips, T. D. (2013b). Calcium montmorillonite clay reduces AFB1 and FB1 biomarkers in rats exposed to single and co-exposures of aflatoxin and fumonisin. Journal of Applied Toxicology, 34(7), 795804.CrossRefGoogle ScholarPubMed
Mitchell, N. J., Kumi, J., Aleser, M., Elmore, S. E., Rychlik, K. A., Zychowski, K. E., Romoser, A. A., Phillips, T. D., & Ankrah, N. (2014). Short-Term Safety and Efficacy of Calcium Montmorillonite Clay (UPSN) in Children. The American Journal of Tropical Medicine and Hygiene, 91(4), 777785.CrossRefGoogle ScholarPubMed
Patterson, R., & Yong, L. G. (1993). Efficacy of hydrated sodium calcium aluminosilicate, screening and dilution in reducing the effects of mold contaminated corn in pigs. Canadian Journal of Animal Science, 73(3), 615624.CrossRefGoogle Scholar
Phillips, T.D. (1999) Dietary clay in the chemoprevention of aflatoxininduced disease. Toxicological Sciences, 52(suppl_1), 118126.CrossRefGoogle Scholar
Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. S., & Heidelbaugh, N. D. (1987). Mycotoxin hazards in agriculture: New approach to control. Journal of the American Veterinary Medical Association, 190, 1617 (Abstract).Google Scholar
Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. S., & Heidelbaugh, N. D. (1988). Hydrated Sodium Calcium Aluminosilicate: A High Affinity Sorbent for Aflatoxin. Poultry Science, 67(2), 243247.CrossRefGoogle ScholarPubMed
Phillips, T. D., Clement, B. A., Kubena, L. F., & Harvey, R. B. (1990). Detection and detoxification of aflatoxins: prevention of aflatoxicosis and aflatoxin residues with hydrated sodium calcium aluminosilicate. Strengthening Journalism in Europe, 1(Suppl_15–19).Google Scholar
Phillips, T. D., Sarr, A. B., & Grant, P. G. (1995). Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay. Natrual Toxins, 3, 204213.CrossRefGoogle ScholarPubMed
Phillips, T. D., Lemke, S. L., & Grant, P. G. (2002). Characterization of Clay-Based Enterosorbents for the Prevention of Aflatoxicosis. Mycotoxins and Food Safety, 504, 157171.CrossRefGoogle ScholarPubMed
Phillips, T. D., Afriyie-Gyawu, E., Wang, J. S., Williams, J. H., & Huebner, H. (2006). The potential of aflatoxin sequestering clay. In Barug, D. et al. (Eds.), The Mycotoxin Factbook: Food and Feed Topics (pp. 329346). Germany: Wageningen Academic Publishers.Google Scholar
Phillips, T. D., Afriyie-Gyawu, E., Williams, J., Huebner, H., Ankrah, N.-A., Ofori-Adjei, D., Jolly, P., Johnson, N., Taylor, J., Marroquin-Cardona, A., Xu, L., Tang, L., & Wang, J.-S. (2008). Reducing human exposure to aflatoxin through the use of clay: A review. Food Additives & Contaminants: Part A, 25(2), 134145.CrossRefGoogle ScholarPubMed
Pimpukdee, K., Kubena, L. F., Bailey, C. A., Huebner, H. J., Afriyie-Gyawu, E., & Phillips, T. D. (2004). Aflatoxin-induced toxicity and depletion of hepatic vitamin A in young broiler chicks: protection of chicks in the presence of low levels of NovaSil PLUS in the diet. Poultry Science, 83(5), 737744.CrossRefGoogle ScholarPubMed
Pollock, B. H., Elmore, S., Romoser, A., Tang, L., Kang, M., Xue, K., Rodriguez, M., Dierschke, N., Hayes, H. G., Hansen, H. A., Guerra, F., Wang, J. S., & Phillips, T. D. (2016). Intervention trial with calcium montmorillonite clay in a south Texas population exposed to aflatoxin. Journal of Food Additives and Contaminants, 33(8), 13461354.Google Scholar
Qian, G., Tang, L., Lin, S., Xue, K. S., Mitchell, N. J., Su, J., Gelderblom, W. C., Riley, R. T., Phillips, T. D., & Wang, J. S. (2016). Sequential dietary exposure to aflatoxin B1 and fumonisin B1 in F344 rats increases liver preneoplastic changes indicative of a synergistic interaction. Food and Chemical Toxicology, 95, 188195.CrossRefGoogle ScholarPubMed
Robinson, A., Johnson, N. M., Strey, A., Taylor, J. F., Marroquin-Cardona, A., Mitchell, N. J., Afriyie-Gyawu, E., Ankrah, N. A., Williams, J. H., Wang, J. S., Jolly, P. E., Nachman, R. J., & Phillips, T. D. (2012). Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans. Journal of Food Additives and Contaminants, 29(5), 809818.CrossRefGoogle ScholarPubMed
Sarr, A. B., Mayura, K., Kubena, L. F., Harvey, R. B., & Phillips, T. D. (1995). Effects of phyllosilicate clay on the metabolic profile of aflatoxin B1 in Fischer-344 rats. Toxicology Letter, 75(1–3), 145151.CrossRefGoogle ScholarPubMed
Schell, T. C., Lindemann, M. D., Kornegay, E. T., Blodgett, D. J., & Doerr, J. A. (1993). Effectiveness of different types of clay for reducing the detrimental effects of aflatoxin-contaminated diets on performance and serum profiles of weanling pigs. Journal of Animal Science, 71(5), 12261231.CrossRefGoogle ScholarPubMed
Schulze, D. G. (1989). An Introduction to Soil Mineralogy. Madison: Soil Science Society of America.CrossRefGoogle Scholar
Smith, E. E., Phillips, T. D., Ellis, J. A., Harvey, R. B., Kubena, L. F., Thompson, J., & Newton, G. (1994). Dietary hydrated sodium calcium aluminosilicate reduction of aflatoxin M1 residue in dairy goat milk and effects on milk production and components. Journal of Animal Science, 72(3), 677682.CrossRefGoogle ScholarPubMed
Southern, E. M., Case-Green, S. C., Elder, J. K., Johnson, M., mir, K. U., Wang, L., & Williams, J. C. (1994). Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Research, 22(8), 13681373.CrossRefGoogle ScholarPubMed
Voss, K. A., Dorner, J. W., & Cole, R. J. (1993). Melioration of Aflatoxicosis in Rats by Volclay NF-BC, Microfine Bentonite. Journal of Food Protection, 56(7), 595598.CrossRefGoogle Scholar
Wang, J. S., Luo, H., Billam, M., Wang, Z., Guan, H., Tang, L., Goldston, T., Afriyie-Gyawu, E., Lovett, C., Griswold, J., Brattin, B., Taylor, R. J., Huebner, H. J., & Phillips, T. D. (2005). Short-term safety evaluation of processed calcium montmorillonite clay (NovaSil) in humans. Food Additives Contaminants, 22(3), 270279.CrossRefGoogle ScholarPubMed
Wang, P., Afriyie-Gyawu, E., Tang, Y., Johnson, N. M., Xu, L., Tang, L., Huebner, H. J., Ankrah, N. A., Ofori-Adjei, D., Ellis, W., Jolly, P. E., Williams, J. H., Wang, J. S., & Phillips, T. D. (2008). NovaSil clay intervention in Ghanaians at high risk for aflatoxicosis: II. Reduction in biomarkers of aflatoxin exposure in blood and urine. Food Additives and Contaminants, 25(5), 622634.CrossRefGoogle ScholarPubMed
Wild, C. P., & Turner, P. C. (2002). The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis, 17(6), 471481.CrossRefGoogle ScholarPubMed
Wild, C. P., Hudson, G. J., Sabbioni, G., Chapot, B., Hall, A. J., Wogan, G. N., Whittle, H., Montesano, R., & Groopman, J. (1992). Dietary intake of aflatoxins and the level of albumin-bound aflatoxin in peripheral blood in The Gambia, West Africa. Cancer Epidemiology, Biomarkers & Prevention, 1(3).Google ScholarPubMed
Wiles, M., Huebner, H., Afriyie-Gyawu, E., Taylor, R., Bratton, G., & Phillips, T. (2004). Toxicological evaluation and metal bioavailability in pregnant rats following exposure to clay minerals in the diet. Journal of Toxicology and Environmental Health A, 67(11), 863874.CrossRefGoogle ScholarPubMed
Wu, F., & Khlangwiset, P. (2010). Evaluating the technical feasibility of aflatoxin risk reduction strategies in Africa. Food Additives & Contaminants: Part A, 27(5), 658676.CrossRefGoogle ScholarPubMed
Xue, K. S., Qian, G., Lin, S., Su, J., Tang, L., Gelderblom, W. C. A., Riley, R.T., Phillips, T. D., & Wang, J. S. (2018). Modulation of preneoplastic biomarkers induced by sequential aflatoxin B1 and fumonisin B1exposure in F344 rats treated with UPSN clay. Food Chem Toxicol, 114, 316324.CrossRefGoogle Scholar
Zhao, J., Shirley, R. B., Dibner, J. D., Uraizee, F., Offier, M., Kitchell, M., Vazaquez-Anon, M., & Knight, C. D. (2010). Comparison of hydrated sodium calcium aluminosilicate and yeast cell wall on counteracting aflatoxicosis in broiler chicks. Poultry Science, 89(10), 21472156.CrossRefGoogle ScholarPubMed
Zychowski, K. E., Elmore, S. E., Rychlik, K. A., Ly, H. J., Pierezan, F., Isaiah, A., Suchodolski, J. S., Hoffmann, A. R., Romoser, A. A., & Phillips, T. D. (2015). Mitigation of Colitis with NovaSil Clay Therapy. Digestive Diseases and Sciences, 60(2), 382392.CrossRefGoogle ScholarPubMed