Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-28T19:55:44.964Z Has data issue: false hasContentIssue false

Occurrence of Iron in the Minerals of Carboniferous Coal Gangue of the Pingshuo Open-pit Mine, North China

Published online by Cambridge University Press:  01 January 2024

Lihui Liu
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining &Technology (Beijing), Beijing 100083, China
Qinfu Liu*
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining &Technology (Beijing), Beijing 100083, China
Yakui Li
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining &Technology (Beijing), Beijing 100083, China
Haiyue Cao
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining &Technology (Beijing), Beijing 100083, China
Xingjian Kang
Affiliation:
School of Geosciences and Surveying Engineering, China University of Mining &Technology (Beijing), Beijing 100083, China
*

Abstract

The state of iron in coal gangue minerals is an important factor in determining the potential for value-added utilization of this solid waste; this is especially true for the coal gangue coming from the Pingshuo open-pit mine in China. The objective of the present study was to characterize the petrological, mineralogical, and chemical states of Fe in the coal gangue from the Carboniferous Taiyuan Formation. Methods used included polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), X-ray fluorescence, micro-Fourier-transform infrared (micro-FTIR) spectroscopy, and Mössbauer spectroscopy. The coal gangues are mudstones, silty mudstones, and pelitic siltstones, which are composed primarily of kaolinite, quartz, feldspar, pyrite, illite, and magnesite. In coal gangue, the Fe was found to occur in ferruginous minerals, in crystal-lattice substitutions, or in a colloidal state. The ferruginous minerals in the coal gangue are pyrite and marcasite, and the pyrite morphologies are framboidal, euhedral octahedral crystals, subhedral granular crystals, and irregular crystals. The results of SEM–EDS and micro-FTIR confirmed that the lattice substitution of Fe in the coal gangue minerals occurred mainly in kaolinite, resulting in two types of kaolinite: iron-containing and iron-free kaolinite. The former may be transformed from volcanic biotite and the latter from volcanic feldspar. The Mössbauer spectra of kaolinite showed intense doublets with isomer shift and quadrupole splitting values consistent with tetrahedrally coordinated Fe3+ and ocahedrally coordinated Fe2+, suggesting the presence of two types of substitution sites: (1) Fe2+ replacing Al3+ in the octahedral sheet; and (2) Fe3+ replacing Si4+ in the tetrahedral sheet. This study has important theoretical significance for the high-value utilization of coal gangue.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor: Yuji Arai

References

Ambikadevi, V. R., & Lalithambika, M. (2000). Effect of organic acids on ferric iron removal from iron-stained kaolinite. Applied Clay Science, 16(3–4), 133145.CrossRefGoogle Scholar
Bertolino, L. C., Rossi, A. M., Scorzelli, R. B., & Torem, M. L. (2010). Influence of iron on kaolin whiteness: An electron paramagnetic resonance study. Applied Clay Science, 49, 170175.CrossRefGoogle Scholar
Brindley, G. W. (1980). Quantitative X-ray analysis of clays. In Brindley, G. W. & Brown, G. (Eds.), Crystal structures of clay minerals and their X-ray identification (pp. 411438). Mineralogical Society.CrossRefGoogle Scholar
Cao, Y., Ma, B., & Fu, G. (2021a). Research progress of high value utilization of coal gangue. Refractories & Lime, 46, 3539.Google Scholar
Cao, Z., Jia, Y., Wang, Q., & Cheng, H. (2021b). High-efficiency photo-fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Applied Clay Science, 212, 106213.CrossRefGoogle Scholar
Chen, J., Min, F., Liu, L., & Cai, C. (2020). Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations. Fuel, 266, 117082.CrossRefGoogle Scholar
Cheng, H., Liu, Q., Huang, M., Zhang, S., & Frost, R. L. (2013). Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochimica Acta, 555, 16.CrossRefGoogle Scholar
Dai, S., Ren, D., Tang, Y., Shao, L., & Li, S. (2002). Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 51, 237250.CrossRefGoogle Scholar
Dai, S., Hou, X., Ren, D., & Tang, Y. (2003). Surface analysis of pyrite in the no. 9 coal seam, Wuda coalfield, Inner Mongolia, China, using high-resolution time-of-fight secondary ion mass-spectrometry. International Journal of Coal Geology, 55, 139150.CrossRefGoogle Scholar
Devic, G., Pfendt, P., Jovancicevic, B., & Popovic, Z. (2010). Pyrite formation in organic-rich clay, calcitic and coal-forming environments. Acta Geologica Sinica, 80, 574588.CrossRefGoogle Scholar
Frankie, K., & Hower, J. (1987). Variation in pyrite size, form, and microlithotype association in the springfield (no. 9) and herrin (no. 11) coals, Western Kentucky. International Journal of Coal Geology, 7, 349364.CrossRefGoogle Scholar
Fysh, S. A., Cashion, J. D., & Clark, P. E. (1983). Mössbauer effect studies of iron in kaolin. II. Surface iron. Clays and Clay Minerals, 31, 293298.CrossRefGoogle Scholar
Gonzalez, J. A., & Ruiz, M. (2006). Bleaching of kaolins and clays by chlorination of iron and titanium. Applied Clay Science, 33, 219229.CrossRefGoogle Scholar
Häusler, W. (2004). Firing of clays studied by X-ray diffraction and Mössbauer spectroscopy. Hyperfine Interactions, 154, 121141.CrossRefGoogle Scholar
Hosseini, M. R., & Ahmadi, A. (2015). Biological beneficiation of kaolin: A review on iron removal. Applied Clay Science, 107, 238245.CrossRefGoogle Scholar
Kortenski, J., & Kostova, I. (1996). Occurrence and morphology of pyrite in Bulgarian coals. International Journal of Coal Geology, 29, 273290.CrossRefGoogle Scholar
Kramer, M. J., Mendelev, M. I., & Napolitano, R. E. (2010). In situ observation of antisite defect formation during crystal growth. Physical Review Letters, 105, 245501.CrossRefGoogle ScholarPubMed
Li, J., & Wang, J. (2019). Comprehensive utilization and environmental risks of coal gangue: A review. Journal of Cleaner Production, 239.CrossRefGoogle Scholar
Liu, D., Yang, Q., Zhou, C., Tang, D., & Kang, X. (1998). Occurrence and geological genesis of pyrites in Late Paleozoic coals in North China. Chinese Journal of Geochemistry, 28, 340350.Google Scholar
Liu, Q., Li, X., & Cheng, H. (2016). Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls. Applied Clay Science, 124–125, 175182.CrossRefGoogle Scholar
Liu, Y., Yu, L., & Wang, H. (2013). Study on countermeasures of coal gangue pollution prevention and regional sustainable development in China. In Applied Mechanics and Materials (Vol. 307, pp. 510513). Trans Tech Publications, Ltd.Google Scholar
Lu, Y., Li, J., & Liu, Q. (2015). Effect of grain size and crystallinity of kaolinite from coal on kaolinite intercalation. Acta Mineralogica Sinica, 35, 209213.Google Scholar
Meng, F., Yu, J., Tahmasebi, A., & Han, Y. (2013). Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using TGA and drop tube furnace. Energy & Fuels, 27, 29232932.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. Jr. (1989). X-ray diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.Google Scholar
Ozdeniz, A. H., Corumluoglu, O., & Kalayci, I. (2010). The relationship between the natural compaction and the spontaneous combustion of industrial-scale coal stockpiles. Energy Sources, 22, 121129.CrossRefGoogle Scholar
Pierre, T. G. S., Singh, B., Webb, J., & Gilkes, B. (1992). Mössbauer spectra of soil kaolins from South-Western Australia. Clays and Clay Minerals, 40, 341346.CrossRefGoogle Scholar
Pone, J. D. N., Hein, K. A. A., Stracher, G. B., Annegarn, H. J., Finkleman, R. B., Blake, D. R., Mccormack, J. K., & Schroeder, P. (2007). The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72, 124140.CrossRefGoogle Scholar
Qin, Y., Wang, W., Song, D., & Zhang, X. (2005). Geochemistry characteristics and sedimentary micro-environments of no. 11 coal seam of the Taiyuan Formation of upper Carboniferous in Pingshuo mining district, Shanxi Province. Journal of Palaeogeography, 7, 249260.Google Scholar
Querol, X., Chinchon, S., & Lopez-Soler, A. (1989). Iron sulfide precipitation sequence in Albian coals from the Maestrazgo basin, southeastern Iberian range, Northeastern Spain. International Journal of Coal Geology, 11, 171189.CrossRefGoogle Scholar
Querol, X., Zhuang, X., Font, O., Izquierdo, M., Alastuey, A., Castro, I., Drooge, B. L. V., Moreno, T., Grimalt, J. O., & Elvira, J. (2011). Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. International Journal of Coal Geology, 85, 222.CrossRefGoogle Scholar
Ribeiro, J., Silva, E. F. D., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the serrinha coal waste pile (Douro coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83, 456466.CrossRefGoogle Scholar
Shao, Q. (2007). The impact of heavy metals transfer from coal waste rock to soil in Xinzhuangzi subsidence area. Coal Geology & Exploration, 6, 3437.Google Scholar
Shi, L., Liu, Q., Zhang, Z., & Yu, X. (2011). Characteristics and genesis of coal measures kaolinite in late Paleozoic of Pingshuo mining area. In Proceedings of the Proceedings of the 13th annual meeting of the Chinese society of mineral and rock geochemistry (pp. 322).Google Scholar
Soliman, M. F., & Goresy, A. E. (2012). Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite. Geochimica et Cosmochimica Acta, 90, 195220.CrossRefGoogle Scholar
Spears, D. A., Tarazona, M., & Lee, S. (1994). Pyrite in UK coals: Its environmental significance. Fuel, 73, 10511055.CrossRefGoogle Scholar
Stracher, G. B., & Taylor, T. P. (2004). Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. International Journal of Coal Geology, 59, 717.CrossRefGoogle Scholar
Tang, Y., & Ren, D. (1993). Research on different pyrites in late Permian coal of Sichuan Province, southwestern China. Coal Science and Technology, 21, 3745.CrossRefGoogle Scholar
Tang, Y., & Ren, D. (1996). The genesis of pyrites in coal. Geological Review, 42, 6470.Google Scholar
Waanders, F. B., Vinken, E., Mans, A., & Mulaba-Bafubiandi, A. F. (2003). Iron minerals in coal, weathered coal and coal ash–SEM and mössbauer results. Hyperfine Interactions, 148–149, 2129.CrossRefGoogle Scholar
Yang, X., & Ding, S. (2005). Study on kaolin in coal measures of west Beijing by mössbauer spectroscopy. Journal of Hebei Institute of Architectural Science and Technology, 22, 7375.Google Scholar
Yani, S., & Zhang, D. (2010). An experimental study into pyrite transformation during pyrolysis of Australian lignite samples. Fuel, 89, 17001708.CrossRefGoogle Scholar
Zhou, C., Liu, G., Yan, Z., Fang, T., & Wang, R. (2012). Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel, 97, 644650.CrossRefGoogle Scholar
Zhou, Y., LaChance, A. M., Smith, A. T., Cheng, H., Liu, Q., & Sun, L. (2019). Strategic design of clay-based multifunctional materials: From natural minerals to nanostructured membranes. Advanced Functional Materials, 29, 1807611.CrossRefGoogle Scholar
Zhuang, X., Zeng, R., & Xu, W. (1998). Trace elements in no. 9 coal from Antaibao open pit mine, Pingshuo, Shanxi province. Earth Science-Journal of China University of Geosciences, 23, 4045.Google Scholar