Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-09T09:41:48.592Z Has data issue: false hasContentIssue false

Organic Exfoliation of Hydrophilic Bentonite using Aliquat 336 and Isobutyl(Trimethoxy)Silane to Enhance its Activity Toward pH-Dependent Adsorption of Epigallocatechin Gallate

Published online by Cambridge University Press:  01 January 2024

Alimpia Borah
Affiliation:
Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Akhil Ranjan Borah
Affiliation:
Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
Monti Gogoi
Affiliation:
Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Rajiv Goswami
Affiliation:
Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Swapnali Hazarika*
Affiliation:
Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Abstract

The most potent and significant polyphenolic molecule from tea catechins is epigallocatechin gallate (EGCG); it has potential anti-cancer and anti-inflammatory properties. Methods are needed to mitigate its presence in the environment and protect humans from exposure. The objective of the present study was to investigate a functionalized, low-cost clay mineral as an adsorbent for the tea polyphenol EGCG. Hydrophilic bentonite (Bn) was functionalized using Aliquat 336 (A336) and isobutyl(trimethoxy)silane (IBTS). The degree of clay functionalization depended on the extent of introduction of alkyl linkages between the superimposed clay layers. Results revealed that Aliquat 336 functionalized clay (A336-Bn) exhibited maximum thermal stability at 500°C and it is a promising adsorbent for ECGC with a maximum adsorption capacity of 196.26 mg/g at equilibrium. Experimental data were analyzed using pseudo-first order and pseudo-second order models. Adsorption isotherms were interpreted from the Freundlich adsorption isotherm.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeywardena, SB, Perera, S, Nalin de Silva, KM, Tissera, NP. A facile method to modify bentonite nanoclay with silane. International Nano Letters. 2017, 7, 3 237241. 10.1007/s40089-017-0214-2CrossRefGoogle Scholar
Anastácio, AS, Aouad, A, Sellin, P, Fabris, JD, Bergaya, F, Stucki, JW. Characterization of a redox-modified clay mineral with respect to its suitability as a barrier in radioactive waste confinement. Applied Clay Science. 2008, 39, 3–4 172179. 10.1016/j.clay.2007.05.007CrossRefGoogle Scholar
Anirudhan, TS, Ramachandran, M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (functionalized clay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection. 2015, 95, 215225. 10.1016/j.psep.2015.03.003CrossRefGoogle Scholar
Asefi, D, Arami, M, Sarabi, AA, Mahmoodi, NM. The chain length influence of cationic surfactant and role of nonionic co-surfactants on controlling the corrosion rate of steel in acidic media. Corrosion Science. 2009, 51, 8 18171821. 10.1016/j.corsci.2009.05.007CrossRefGoogle Scholar
Asefi, D, Mahmoodi, NM, Arami, M. Effect of nonionic co-surfactants on corrosion inhibition effect of cationic gemini surfactant. Colloids and Surfaces a: Physicochemical and Engineering Aspects. 2010, 355, 1–3 183186. 10.1016/j.colsurfa.2009.12.019CrossRefGoogle Scholar
Avella, M, Cosco, S, Volpe, GD, Errico, ME. Crystallization behavior and properties of exfoliated isotactic polypropylene/functionalized clay nanocomposites. Advances in Polymer Technology: Journal of the Polymer Processing Institute. 2005, 24, 2 132144. 10.1002/ADV.20036CrossRefGoogle Scholar
Bai, H, Zhao, Y, Wang, W, Zhang, T, Yi, H, Song, S. Effect of interlayer cations on exfoliating 2D montmorillonite nanosheets with high aspect ratio: From experiment to molecular calculation. Ceramics International. 2019, 45, 14 1705417063. 10.1016/j.ceramint.2019.05.257CrossRefGoogle Scholar
Baruah, K, Bhattacharyya, PK, Hazarika, S. Adsorption of dilute alcohols onto cyclodextrin–polysulfone membrane: Experimental and theoretical analysis. Journal of Chemical & Engineering Data. 2015, 60, 9 25492558. 10.1021/acs.jced.0c00234CrossRefGoogle Scholar
Beltrán, MI, Benavente, V, Marchante, V, Dema, H, Marcilla, A. Characterisation of montmorillonites simultaneously modified with an organic dye and an ammonium salt at different dye/salt ratios. Properties of these modified montmorillonites EVA nanocomposites. Applied Clay Science. 2014, 97, 4352. 10.1016/j.clay.2014.06.001CrossRefGoogle Scholar
Bergaya, F, Lagaly, G. General introduction: Clays, clay minerals, and clay science. Developments in Clay Science. 2006, 1, 118. 10.1016/S1572-4352(05)01001-9CrossRefGoogle Scholar
Borah, A, Gogoi, M, Goswami, R, Sarmah, H, Hazarika, KK, Hazarika, S. Thin film nanocomposite membrane incorporated with clay-ionic liquid framework for enhancing rejection of epigallocatechin gallate in aqueous media. Journal of Environmental Chemical Engineering. 2022, 10, 3 107423. 10.1016/j.jece.2022.107423CrossRefGoogle Scholar
Chanra, J., Budianto, E., & Soegijono, B. (2019, April). Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012057). IOP Publishing. https://doi.org/10.1088/1757-899X/509/1/012057Google Scholar
Chiu, CW, Huang, TK, Wang, YC, Alamani, BG, Lin, JJ. Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science. 2014, 39, 3 443485. 10.1016/j.progpolymsci.2013.07.002CrossRefGoogle Scholar
De Paiva, LB, Morales, AR, Díaz, FRV. Organoclays: Properties, preparation and applications. Applied Clay Science. 2008, 42, 1–2 824. 10.1016/j.clay.2008.02.006CrossRefGoogle Scholar
Düşkünkorur, , Bégué, A, Pollet, E, Phalip, V, Güvenilir, Y, Avérous, L. Enzymatic ring-opening (co) polymerization of lactide stereoisomers catalyzed by lipases. Toward the insitu synthesis of organic/inorganic nanohybrids. Journal of Molecular Catalysis b: Enzymatic. 2015, 115, 2028. 10.1016/J.MOLCATB.2015.01.011CrossRefGoogle Scholar
Guo, F, Aryana, S, Han, Y, Jiao, Y. A review of the synthesis and applications of polymer–nanoclay composites. Applied Sciences. 2018, 8, 9 1696. 10.3390/app8091696CrossRefGoogle Scholar
Hayati, B, Mahmoodi, NM. Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: Mechanism, isotherm and kinetic. Desalination and Water Treatment. 2012, 47, 1–3 322333. 10.1080/19443994.2012.696429CrossRefGoogle Scholar
He, H, Frost, RL, Bostrom, T, Yuan, P, Duong, L, Yang, D, Kloprogge, JT. Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science. 2006, 31, 3–4 262271. 10.1016/j.clay.2005.10.011CrossRefGoogle Scholar
Hosseini, SA, Vossoughi, M, Mahmoodi, NM, Sadrzadeh, M. Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. Journal of Cleaner Production. 2018, 183, 11971206. 10.1016/j.jclepro.2018.02.168CrossRefGoogle Scholar
Kim, NH, Malhotra, SV, Xanthos, M. Modification of cationic nanoclays with ionic liquids. Microporous and Mesoporous Materials. 2006, 96, 1–3 2935. 10.1016/j.micromeso.2006.06.017CrossRefGoogle Scholar
Komori, Y, Sugahara, Y, Kuroda, K. Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate. Applied Clay Science. 1999, 15, 1–2 241252. 10.1016/S0169-1317(99)00014-9CrossRefGoogle Scholar
Kozak, M, Domka, L. Adsorption of the quaternary ammonium salts on montmorillonite. Journal of Physics and Chemistry of Solids. 2004, 65, 2–3 441445. 10.1016/j.jpcs.2003.09.015CrossRefGoogle Scholar
Leung, S. Y., Lam, D. C. C., & Wong, C. P. (2001). Experimental investigation of time dependent degradation of coupling agent bonded interfaces. In: 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No. 01CH37220) (pp. 13331337). IEEE. https://doi.org/10.1109/ECTC.2001.928004CrossRefGoogle Scholar
Li, P, Khan, MA, Xia, M, Lei, W, Zhu, S, Wang, F. Efficient preparation and molecular dynamic (MD) simulations of Gemini surfactant modified layered montmorillonite to potentially remove emerging organic contaminants from wastewater. Ceramics International. 2019, 45, 8 1078210791. 10.1016/j.ceramint.2019.02.152CrossRefGoogle Scholar
Li, Y, Hu, X, Liu, X, Zhang, Y, Zhao, Q, Ning, P, Tian, S. Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chemical Engineering Journal. 2018, 334, 12141221. 10.1016/j.cej.2017.09.140CrossRefGoogle Scholar
Mahmoodi, NM. Nickel ferrite nanoparticle: Synthesis, modification by surfactant and dye removal ability. Water, Air, & Soil Pollution. 2013, 224, 2 111. 10.1007/s11270-012-1419-7CrossRefGoogle Scholar
Mahmoodi, NM, Arami, M. Numerical finite volume modelling of dye decolorization using immobilized titania nano-photocatalysis. Chemical Engineering Journal. 2009, 146, 2 189193. 10.1016/j.cej.2008.05.036CrossRefGoogle Scholar
Mahmoodi, NM, Hayati, B, Arami, M. Textile dye removal from single and ternary systems using date stones: Kinetic, isotherm, and thermodynamic studies. Journal of Chemical & Engineering Data. 2010, 55, 11 46384649. 10.1021/je1002384CrossRefGoogle Scholar
Mahmoodi, NM, Hayati, B, Arami, M, Mazaheri, F. Single and binary system dye removal from colored textile wastewater by a dendrimer as a polymeric nanoarchitecture: Equilibrium and kinetics. Journal of Chemical & Engineering Data. 2010, 55, 11 46604668. 10.1021/je100248mCrossRefGoogle Scholar
Mahmoodi, NM, Arami, M, Bahrami, H, Khorramfar, S. Novel biosorbent (Canola hull): Surface characterization and dye removal ability at various cationic dye concentrations. Desalination. 2010, 264, 1–2 134142. 10.1016/j.desal.2010.07.017CrossRefGoogle Scholar
Mahmoodi, NM, Taghizadeh, M, Taghizadeh, A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: Preparation and artificial neural network modelling of dye removal from single and multicomponent (binary and ternary) systems. Journal of Molecular Liquids. 2018, 269, 217228. 10.1016/j.molliq.2018.07.108CrossRefGoogle Scholar
Manias, E, Touny, A, Wu, L, Strawhecker, K, Lu, B, Chung, TC. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials. 2001, 13, 10 35163523. 10.1021/cm0110627CrossRefGoogle Scholar
Moreno, M., Benavente, E., González, G., Lavayen, V., & Torres, C. M. S. (2006). Functionalization of bentonite by intercalation of surfactants. Molecular Crystals and Liquid Crystals, 448(1), 123725. https://repositorio.uchile.cl/handle/2250/118840CrossRefGoogle Scholar
Moshe, SB, Rytwo, G. Thiamine-based functionalized clay for phenol removal from water. Applied Clay Science. 2018, 155, 5056. 10.1016/j.clay.2018.01.003CrossRefGoogle Scholar
Naranjo, PM, Sham, EL, Castellon, ER, Torres Sánchez, M, Farfan Torres, EM. Identification and quantification of the interaction mechanisms between the cationic surfactant HDTMA-Br and montmorillonite. Clays and Clay Minerals. 2013, 61, 2 98106. 10.1346/CCMN.2013.0610208CrossRefGoogle Scholar
Ouellet-Plamondon, CM, Stasiak, J, Al-Tabbaa, A. The effect of cationic, non-ionic and amphiphilic surfactants on the intercalation of bentonite. Colloids and Surfaces a: Physicochemical and Engineering Aspects. 2014, 444, 330337. 10.1016/j.colsurfa.2013.12.032CrossRefGoogle Scholar
Oveisi, M, Mahmoodi, NM, Asli, MA. Facile and green synthesis of metal-organic framework/inorganic nanofiber using electrospinning for recyclable visible-light photo catalysis. Journal of Cleaner Production. 2019, 222, 669684. 10.1016/j.jclepro.2019.03.066CrossRefGoogle Scholar
Oyanedel-Craver, VA, Fuller, M, Smith, JA. Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science. 2007, 309, 2 485492. 10.1016/j.jcis.2006.10.001CrossRefGoogle ScholarPubMed
Ozturk, H, Pollet, E, Phalip, V, Guvenilir, Y, Averous, L. Nanoclays for lipase immobilization: Biocatalyst characterization and activity in polyester synthesis. Polymers. 2016, 8, 12 416. 10.3390/polym8120416CrossRefGoogle ScholarPubMed
Pandey, P, De, N. Surfactant-induced changes in physicochemical characters of bentonite clay. International Research Journal of Pure and Applied Chemistry. 2018, 15, 4 111. 10.9734/IRJPAC/2017/39374CrossRefGoogle Scholar
Park, Y, Ayoko, GA, Frost, RL. Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. Journal of Colloid and Interface Science. 2011, 354, 1 292305. 10.1016/j.jcis.2010.09.068CrossRefGoogle ScholarPubMed
Park, Y, Ayoko, GA, Kurdi, R, Horváth, E, Kristóf, J, Frost, RL. Adsorption of phenolic compounds by functionalized clays: Implications for the removal of organic pollutants from aqueous media. Journal of Colloid and Interface Science. 2013, 406, 196208. 10.1016/j.jcis.2013.05.027CrossRefGoogle Scholar
Pernyeszi, T, Kasteel, R, Witthuhn, B, Klahre, P, Vereecken, H, Klumpp, E. Functionalized clay for soil remediation: Adsorption of 2, 4-dichlorophenol on functionalized clay/aquifer material mixtures studied under static and flow conditions. Applied Clay Science. 2006, 32, 3–4 179189. 10.1016/j.colsurfa.2004.11.049CrossRefGoogle Scholar
Raji, M, Mekhzoum, MEM, Rodrigue, D, Bouhfid, R. Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Composites Part B: Engineering. 2018, 146, 106115. 10.1016/j.compositesb.2018.04.013CrossRefGoogle Scholar
Terzic, A, Pezo, L, Andric, L, Pavlović, VB, Mitic, VV. Optimization of bentonite clay mechano-chemical activation using artificial neural network modelling. Ceramics International. 2017, 43, 2 25492562. 10.1016/j.ceramint.2016.11.058CrossRefGoogle Scholar
Tian, Q, Qi, Y, Qin, S, Wu, F, Long, L, Xu, G, Yin, X. Effect of Surfactant Concentration on Thermal and Mechanical Properties of Poly (Butylene Succinate)/Functionalized clay Composites. Journal of Macromolecular Science, Part B. 2017, 56, 7 474492. 10.1080/00222348.2017.1327298CrossRefGoogle Scholar
Tonle, IK, Ngameni, E, Tchieno, FM, Walcarius, A. Functionalized clay-modified electrodes: Preparation, characterization and recent electroanalytical applications. Journal of Solid State Electrochemistry. 2015, 19, 7 19491973. 10.1007/s10008-014-2728-0CrossRefGoogle Scholar
Xie, S, Wen, Z, Zhan, H, Jin, M. An experimental study on the adsorption and desorption of Cu (II) in silty clay. Geofluids. 2018, 2018, 3610921. 10.1155/2018/3610921CrossRefGoogle Scholar
Zampori, L, Stampino, PG, Cristiani, C, Dotelli, G, Cazzola, P. Synthesis of functionalized clays using non-ionic surfactants: Effect of time, temperature and concentration. Applied Clay Science. 2010, 48, 1–2 97102. 10.1016/j.clay.2009.11.015CrossRefGoogle Scholar
Zhang, C, Cui, F, Zeng, GM, Jiang, M, Yang, ZZ, Yu, ZG, Shen, LQ. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Science of the Total Environment. 2015, 518, 352362. 10.1016/j.scitotenv.2015.03.007CrossRefGoogle ScholarPubMed
Zhou, Q, Zhu, R, Parker, SC, Zhu, J, He, H, Molinari, M. Modelling the effects of surfactant loading level on the sorption of organic contaminants on functionalized clays. RSC Advances. 2015, 5, 58 4702247030. 10.1039/C5RA05998DCrossRefGoogle Scholar
Zumsteg, R., Plötze, M., & Puzrin, A. (2014). Reduction of the clogging potential of clays: new chemical applications and novel quantification approaches. In: Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013 (pp. 4454). ICE Publishing. https://doi.org/10.1680/geot.SIP13.P.005CrossRefGoogle Scholar