Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T04:37:04.027Z Has data issue: false hasContentIssue false

Preparation and Corrosive Anion-curing Capability of Layered Double Hydroxide (LDH)/Montmorillonite Composites

Published online by Cambridge University Press:  01 January 2024

Limei Wu*
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Mingxi Sun
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Xiaolong Wang
Affiliation:
School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Yushen Lu
Affiliation:
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
Ning Tang*
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Lili Gao
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Qing Wang
Affiliation:
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Ling Hu
Affiliation:
Planning and Finance Division, Shenyang Jianzhu University, Shenyang 110168, China

Abstract

The passive film of reinforcing steel in marine concrete is damaged by the infiltration of chloride and sulfate ions. Layered double hydroxide (LDH) can adsorb anions and release interlayer ions to form passive films due to its ion exchange property. A Mg-Al-NO3 layered double hydroxide/montmorillonite (LDH/Mnt) composite inhibitor was prepared by layer-by-layer self-assembly (LBL) of LDH and Mnt. The structure and morphology of the LDH/Mnt composites were characterized by X-ray diffraction (XRD), laser Raman spectroscopy, N2-adsorption/desorption measurements, and transmission electron microscopy (TEM). The LDH/Mnt composites, as inhibitors of chloride ions and sulfate ions, exhibited high slow-release efficiency. The mass ratio of LDH and Mnt affected the curing capacity of the synthesized composites, and the optimum mass ratio was LDH/Mnt = 1:1 for which slow-release efficiency reached 94.16%.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Binoy Sarkar.

References

Acharya, H, Srivastava, SK, Bhowmick, AK. Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: Structural characterization and properties. Composites Science and Technology. 2007, 67, 13 28072816. 10.1016/j.compscitech.2007.01.03010.1016/j.compscitech.2007.01.030CrossRefGoogle Scholar
Adachi-Pagano, M, Forano, C, Besse, JP. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology. Journal of Materials Chemistry. 2003, 13, 8 19881993. 10.1039/b302747n10.1039/B302747NCrossRefGoogle Scholar
Adam, J, Moreno, J, Bonilla, M, Pellicer, T. Classification of damage to the structures of buildings in towns in coastal areas. Engineering Failure Analysis. 2016, 70, 212221. 10.1016/j.engfailanal.2016.09.00410.1016/j.engfailanal.2016.09.004CrossRefGoogle Scholar
Ahmed, IM, Gasser, MS. Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH). Applied Surface Science. 2012, 259, 650656. 10.1016/j.apsusc.2012.07.09210.1016/j.apsusc.2012.07.092CrossRefGoogle Scholar
Ai, L, Zhang, C, Meng, L. Adsorption of Methyl Orange from Aqueous Solution on Hydrothermal Synthesized Mg–Al Layered Double Hydroxide. Journal of Chemical & Engineering Data. 2011, 56, 11 42174225. 10.1021/je200743u10.1021/je200743uCrossRefGoogle Scholar
Bakr, A, Mostafa, M, Sultan, E. Mn(II) removal from aqueous solutions by Co/Mo layered double hydroxide: Kinetics and thermodynamics. Egyptian Journal of Petroleum. 2016, 25, 2 171181. 10.1016/j.ejpe.2015.04.00210.1016/j.ejpe.2015.04.002CrossRefGoogle Scholar
Bakr, A, Sayed, N, Salama, T, Ali, I, Gayed, R, Negm, N. Potential of Mg–Zn–Al layered double hydroxide (LDH)/montmorillonite nanocomposite in remediation of wastewater containing manganese ions. Research on Chemical Intermediates. 2018, 44, 1 389405. 10.1007/s11164-017-3110-510.1007/s11164-017-3110-5CrossRefGoogle Scholar
Cao, Y, Dong, S, Zheng, D, Wang, J, Zhang, X, Du, R, Song, G, Lin, C. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete. Corrosion Science. 2017, 126, 166179. 10.1016/j.corsci.2017.06.02610.1016/j.corsci.2017.06.026CrossRefGoogle Scholar
Chen, C, Zhou, W, Yang, Q, Zhu, L, Zhu, L. Sorption characteristics of nitroso diphenylamine (NDPhA) and diphenylamine (DPhA) onto organo-bentonite from aqueous solution. Chemical Engineering Journal. 2014, 240, 487493. 10.1016/j.cej.2013.10.09910.1016/j.cej.2013.10.099CrossRefGoogle Scholar
Chen, M., Cai, Y., Zhang, M., Yu, L., Wu, F., Jiang, J., Yang, H., Bi, R. & Yu, Y. (2021) Novel Ca-SLS-LDH nanocomposites obtained via lignosulfonate modification for corrosion protection of steel bars in simulated concrete pore solution. Applied Clay Science, 211, 106195. https://doi.org/10.1016/j.clay.2021.106195CrossRefGoogle Scholar
Christie, AB, Lee, J, Sutherland, I, Walls, JM. An XPS study of ion-induced compositional changes with group II and group IV compounds. Applications of Surface Science. 1983, 15, 1 224237. 10.1016/0378-5963(83)90018-110.1016/0378-5963(83)90018-1CrossRefGoogle Scholar
Das, J, Sairam Patra, B, Baliarsingh, N, Parida, KM. Calcined Mg–Fe–CO3 LDH as an adsorbent for the removal of selenite. Journal of Colloid and Interface Science. 2007, 316, 2 216223. 10.1016/j.jcis.2007.07.08210.1016/j.jcis.2007.07.082CrossRefGoogle ScholarPubMed
Daud, M., Hai, A., Banat, F., Wazir, M. B., Habib, M., Bharath, G. & Al-Harthi, M. A. (2019) A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – Containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids, 288, 110989. https://doi.org/10.1016/j.molliq.2019.110989CrossRefGoogle Scholar
David, A, Driessche, P. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochimica Acta. 2011, 56, 23 80058013. 10.1016/j.electacta.2011.01.067Google Scholar
Demri, B, Muster, D. XPS study of some calcium compounds. Journal of Materials Processing Technology. 1995, 55, 3 311314. 10.1016/0924-0136(95)02023-310.1016/0924-0136(95)02023-3CrossRefGoogle Scholar
Dong, Y, Ma, L, Zhou, Q. Effect of the incorporation of montmorillonite-layered double hydroxide nano clays on the corrosion protection of epoxy coatings. Journal of Coatings Technology and Research. 2013, 10, 6 909921. 10.1007/s11998-013-9519-x10.1007/s11998-013-9519-xCrossRefGoogle Scholar
Frost, R, Rintoul, L. Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Applied Clay Science. 1996, 11, 2–4 171183. 10.1016/S0169-1317(96)00017-810.1016/S0169-1317(96)00017-8CrossRefGoogle Scholar
Geoffrey, N, Nicholas, C. Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews. 2008, 27, 2324. 10.1016/j.quascirev.2008.08.012Google Scholar
Gomes, C, Mir, Z, Sampaio, R, Bastos, A, Tedim, J, Maia, F, Rocha, C, Ferreira, M. Use of ZnAl-Layered Double Hydroxide (LDH) to Extend the Service Life of Reinforced Concrete. Materials. 2020, 13, 7 1769. 10.3390/ma1307176910.3390/ma13071769CrossRefGoogle ScholarPubMed
Guo, XD, Zhang, LJ, Chen, Y, Qian, Y. Core/shell pH-sensitive micelles self-assembled from cholesterol conjugated oligopeptides for anticancer drug delivery. AIChE Journal. 2009, 56, 7 19221931. 10.1002/aic.1211910.1002/aic.12119CrossRefGoogle Scholar
Haber, J, Stoch, J, Ungier, L. X-ray photoelectron spectra of oxygen in oxides of Co, Ni, Fe and Zn. Journal of Electron Spectroscopy and Related Phenomena. 1976, 9, 5 459467. 10.1016/0368-2048(76)80064-310.1016/0368-2048(76)80064-3CrossRefGoogle Scholar
Javadian, S, Darbasizadeh, B, Yousefi, A, Ektefa, F, Dalir, N, Kakemam, J. Dye-surfactant aggregates as corrosion inhibitor for mild steel in NaCl medium: Experimental and theoretical studies. Journal of the Taiwan Institute of Chemical Engineers. 2017, 71, 344354. 10.1016/j.jtice.2016.11.01410.1016/j.jtice.2016.11.014CrossRefGoogle Scholar
Javadian, S, Yousefi, A, Neshati, J. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl. Applied Surface Science. 2013, 285, 674681. 10.1016/j.apsusc.2013.08.10910.1016/j.apsusc.2013.08.109CrossRefGoogle Scholar
Jentzsch, PV, Kampe, B, Ciobotă, V, Rösch, P, Popp, J. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool(J). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013, 115, 697708. 10.3390/cmd201000510.1016/j.saa.2013.06.085CrossRefGoogle Scholar
Kanezaki, E. Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics. 1998, 106, 3 279284. 10.1016/S0167-2738(97)00494-310.1016/S0167-2738(97)00494-3CrossRefGoogle Scholar
Odeku, K. An Analysis of ‘Operation Phakisa’ to Unlock the Potential of Ocean Resources in South Africa. Journal of Asian and African Studies. 2021, 56, 2 382394. 10.1177/002190962092188510.1177/0021909620921885CrossRefGoogle Scholar
Lecloux, A, Pirard, JP. The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. Journal of Colloid and Interface Science. 1979, 70, 2 265281. 10.1016/0021-9797(79)90031-610.1016/0021-9797(79)90031-6CrossRefGoogle Scholar
Lv, G, Li, Z, Jiang, WT, Chang, PH, Liao, L. Interlayer configuration of ionic liquids in a Ca-montmorillonite as evidenced by FTIR, TG-DTG, and XRD analyses. Materials Chemistry and Physics. 2015, 162, 417424. 10.1016/j.matchemphys.2015.06.00810.1016/j.matchemphys.2015.06.008CrossRefGoogle Scholar
Lv, L, He, J, Wei, M, Evans, DG, Duan, X. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Research. 2006, 40, 4 735743. 10.1016/j.watres.2005.11.04310.1016/j.watres.2005.11.043CrossRefGoogle ScholarPubMed
Machner, A, Zajac, M, Ben Haha, M, Kjellsen, KO, Geiker, MR, De Weerdt, K. Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cement and Concrete Research. 2018, 107, 163181. 10.1016/j.cemconres.2018.02.00210.1016/j.cemconres.2018.02.002CrossRefGoogle Scholar
Mir, ZM, Gomes, C, Bastos, AC, Sampaio, R, Maia, F, Rocha, C, Tedim, J, Höche, D, Ferreira, MGS, Zheludkevich, ML. The Stability and Chloride Entrapping Capacity of ZnAl-NO2 LDH in High-Alkaline/Cementitious Environment. Corrosion and Materials Degradation. 2021, 2, 1 7899. 10.3390/cmd201000510.3390/cmd2010005CrossRefGoogle Scholar
Miyata, S. Anion-Exchange Properties of Hydrotalcite-Like Compounds. Clays and Clay Minerals. 1983, 31, 4 305311. 10.3390/ma1306142610.1346/CCMN.1983.0310409CrossRefGoogle Scholar
Oh, K, Ahn, S, Eom, K, Jung, K, Kwon, H. Observation of passive films on Fe-20Cr-xNi(x = 0, 10, 20 wt.%) alloys using TEM and Cs-corrected STEM–EELS. Corrosion Science. 2014, 79, 3440. 10.1016/j.corsci.2013.10.02310.1016/j.corsci.2013.10.023CrossRefGoogle Scholar
Qiu, L, Chen, W, Qu, B. Morphology and thermal stabilization mechanism of LLDPE/MMt and LLDPE/LDH nanocomposites. Polymer. 2006, 47, 3 922930. 10.1016/j.polymer.2005.12.01710.1016/j.polymer.2005.12.017CrossRefGoogle Scholar
Rives, V, Angeles Ulibarri, MA. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometallates. Coordination Chemistry Reviews. 1999, 181, 1 61120. 10.1016/S0010-8545(98)00216-110.1016/S0010-8545(98)00216-1CrossRefGoogle Scholar
Roobottom, HK, Jenkins, HDB, Passmore, J, Glasser, L. Thermochemical Radii of Complex Ions. Journal of Chemical Education. 1999, 76, 11 1570. 10.1021/ed076p157010.1021/ed076p1570CrossRefGoogle Scholar
Ryu, HS, Singh, JK, Lee, HS, Ismail, MA, Park, WJ. Effect of LiNO2 inhibitor on corrosion characteristics of steel rebar in saturated Ca(OH)2 solution containing NaCl: An electrochemical study. Construction and Building Materials. 2017, 133, 387396. 10.1016/j.conbuildmat.2016.12.08610.1016/j.conbuildmat.2016.12.086CrossRefGoogle Scholar
Sing, KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry. 1985, 57, 4 603619. 10.1351/pac19855704060310.1351/pac198557040603CrossRefGoogle Scholar
Sing, KSW. The use of gas adsorption for the characterization of porous solids. Colloids and Surfaces. 1989, 38, 1 113124. 10.1016/0166-6622(89)80148-910.1016/0166-6622(89)80148-9CrossRefGoogle Scholar
Kim, T. Efficient management of marine resources in conflict: An empirical study of marine sand mining. Korea, Journal of Environmental Management. 2009, 91, 1 7886. 10.1016/j.jenvman.2009.07.006Google ScholarPubMed
Tian, R, Zhong, J, Lu, C, Duan, X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chemical Science. 2018, 9, 1 218222. 10.1039/c7sc03897f10.1039/C7SC03897FCrossRefGoogle ScholarPubMed
Tian, Y, Dong, C, Wang, G, Cheng, X, Li, X. Zn–Al–NO2 layered double hydroxide as a controlled-release corrosion inhibitor for steel reinforcements. Materials Letters. 2019, 236, 517520. 10.1016/j.matlet.2018.10.17710.1016/j.matlet.2018.10.177CrossRefGoogle Scholar
Tonda, S, Kumar, S, Bhardwaj, M, Yadav, P, Ogale, S. g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels. ACS Applied Materials and Interfaces. 2018, 10, 3 26672678. 10.1021/acsami.7b1883510.1021/acsami.7b18835CrossRefGoogle ScholarPubMed
Vaculíková, L, Plevová, E, Ritz, M. Characterization of Montmorillonites by Infrared and Raman Spectroscopy for Preparation of Polymer-Clay Nanocomposites. Journal of Nanoscience and Nanotechnology. 2019, 19, 5 27752781. 10.1166/jnn.2019.1587710.1166/jnn.2019.15877CrossRefGoogle ScholarPubMed
Valdez, B, Ramirez, J, Eliezer, A, Schorr, M, Ramos, R, Salinas, R. Corrosion assessment of infrastructure assets in coastal seas. Journal of Marine Engineering & Technology. 2016, 19, 4 240248. 10.1080/20464177.2016.1247635Google Scholar
Varga, G, Somosi, Z, Kónya, Z, Kukovecz, Á, Pálinkó, I, Szilagyi, I. A colloid chemistry route for the preparation of hierarchically ordered mesoporous layered double hydroxides using surfactants as sacrificial templates. Journal of Colloid and Interface Science. 2021, 581, 928938. 10.1016/j.jcis.2020.08.11810.1016/j.jcis.2020.08.118CrossRefGoogle ScholarPubMed
Wang, D, Xiang, B, Liang, Y, Song, S, Liu, C. Corrosion control of copper in 3.5 wt.% NaCl Solution by Domperidone: Experimental and Theoretical Study. Corrosion Science. 2014, 85, 7786. 10.1016/j.corsci.2014.04.00210.1016/j.corsci.2014.04.002CrossRefGoogle Scholar
Wang, Q, O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews. 2012, 112, 7 41244155. 10.1021/cr200434v10.1021/cr200434vCrossRefGoogle ScholarPubMed
Wang, X., Xu, J. & Song, Y. (2021) Kinetic, thermodynamic and equilibrium studies on chloride adsorption from simulated concrete pore solution by core@shell zeolite-LTA@Mg-Al layered double hydroxides. Applied Clay Science, 209, 106117. https://doi.org/10.1016/j.clay.2021.106117CrossRefGoogle Scholar
Wang, Z, Zhao, XL, Xian, G, Wu, G, Singh Raman, RK, Al-Saadi, S, Haque, A. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Construction and Building Materials. 2017, 139, 467489. 10.1016/j.conbuildmat.2017.02.03810.1016/j.conbuildmat.2017.02.038CrossRefGoogle Scholar
Wu, B., Zuo, J., Dong, B., Xing, F. & Luo, C. (2019) Study on the affinity sequence between inhibitor ions and chloride ions in Mg Al layer double hydroxides and their effects on corrosion protection for carbon steel. Applied Clay Science, 180, 105181. https://doi.org/10.1016/j.clay.2019. https://doi.org/10.1016/j.clay.2019.105181CrossRefGoogle Scholar
Xu, J, Song, Y, Tan, Q, Jiang, L. Chloride absorption by nitrate, nitrite and aminobenzoate intercalated layered double hydroxides. Journal of Materials Science. 2017, 52, 10 59085916. 10.1007/s10853-017-0826-y10.1007/s10853-017-0826-yCrossRefGoogle Scholar
You, Y, Vance, GF, Zhao, H. Selenium adsorption on Mg–Al and Zn–Al layered double hydroxides. Applied Clay Science. 2001, 20, 1 1325. 10.1016/S0169-1317(00)00043-010.1016/S0169-1317(00)00043-0CrossRefGoogle Scholar
Yusuf, S, Moheb, A, Dinari, M. Green phenol hydroxylation by ultrasonic-assisted synthesized Mg/Cu/Al-LDH catalyst with different molar ratios of Cu2+/Mg2+. Research on Chemical Intermediates. 2021, 47, 4 12971313. 10.1007/s11164-021-04402-010.1007/s11164-021-04402-0CrossRefGoogle Scholar
Zhang, B, Luan, L, Gao, R, Li, F, Li, Y, Wu, T. Rapid and effective removal of Cr(VI) from aqueous solution using exfoliated LDH nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017, 520, 399408. 10.1016/j.colsurfa.2017.01.07410.1016/j.colsurfa.2017.01.074CrossRefGoogle Scholar
Zou, Y., Zhang, R., Wang, L., Xue, K. & Chen, J. (2020) Strong adsorption of phosphate from aqueous solution by zirconium-loaded Ca-montmorillonite. Applied Clay Science, 192, 105638. https://doi.org/10.1016/j.clay.2020.105638CrossRefGoogle Scholar
Zubair, M, Daud, M, McKay, G, Shehzad, F, Al-Harthi, MA. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science. 2017, 143, 279292. 10.1016/j.clay.2017.04.00210.1016/j.clay.2017.04.002CrossRefGoogle Scholar
Zuo, J, Wu, B, Luo, C, Dong, B, Xing, F. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution. Corrosion Science. 2019, 152, 120129. 10.1016/j.corsci.2019.03.00710.1016/j.corsci.2019.03.007CrossRefGoogle Scholar