Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-23T12:01:26.869Z Has data issue: false hasContentIssue false

Quantification Curves for XRD Analysis of Mixed-Layer 14Å/10Å Clay Minerals

Published online by Cambridge University Press:  28 February 2024

C. H. Pons
Affiliation:
Université d'Orléans, CRMD Unité Mixte CNRS-Université, U.F.R. Faculté des Sciences, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
C. de la Calle
Affiliation:
Instituto de Ciencia de Materiales, Sede D, C.S.I.C., c) Serrano 113, 28006 Madrid, Spain
J. L. Martin de Vidales
Affiliation:
Departamento de Quimica Agricola, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid, Spain

Abstract

Using theoretical profiles of diffracted X-ray intensity for interstratification between layers having d-spacings around 14.3 Å and 10.1 Å, a series of diagrams was derived from which the proportion of 14.3 Å layers (W14) and the probability of passing from a 14.3 Å layer to a 10.1 Å layer (P14/10) can be derived. W14 can be derived independently of P14/10 using the angular distance between reflections situated at 18.2° and 25.4° 2θ (CuKα). Once W14 is determined, P14/10 may be obtained using the angular width of the diffuse reflections between 27° and 34° 2θ. In this case, two different diagrams are proposed for P14/10 determination because experimental X-ray patterns show either one or two diffuse reflections. Comparison of five experimental patterns with theoretical patterns calculated using W14 and P14/10 obtained using these diagrams indicates that the method can be useful for determining W14 and P14/10 in unknown samples. Moreover, the method described is independent of the Lorentz polarization factor and the layer type. The d-spacings associated with the two kinds of layers, however, should be similar (± 1%) to those for which the determinative diagrams were calculated.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., 1980. Structures of layer silicates. In Crystal Structures of Clay Minerals and Their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 1123.Google Scholar
Bailey, S. W., 1982. Nomenclature for regular interstratification. Clay Miner. 17: 243248.CrossRefGoogle Scholar
Boettcher, A. L., 1966. Vermiculite, hydrobiotite and biotite in the Rainy Creek igneous complex near Libby, Montana. Clay Miner. 6: 283296.CrossRefGoogle Scholar
Brindley, G. W., and Gillery, F. M. 1956 . X-ray identification of chlorite species. Amer. Mineral. 41: 169181.Google Scholar
Brindley, G. W., Zalba, P. E., and Bethke, C. M. 1983 . Hydrobiotite, a regular 1: 1 interstratification of biotite and vermiculite layers. Amer. Mineral. 68: 420425.Google Scholar
de la Calle, C., and Suquet, H. . Vermiculite. In Reviews in Mineralogy, Vol 19. Hydrous Phyllosilicates. Bailey, S. W., 1988 ed. New York: Mineralogical Society of America, 455496.CrossRefGoogle Scholar
Guinier, A., 1964. Theorie et technique de la radiocristallographie. Chap. 13. Paris: Dunod, 490663.Google Scholar
Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J., and Vanden Heuvel, R. C. 1952 . Weathering sequence of clay size minerals in soils and sediments. II Chemical weathering of layer silicate. Soil Sci. Soc. Amer. Proc. 16: 36.CrossRefGoogle Scholar
Kakinoki, J., and Komura, Y. 1952 . Intensity of X-ray diffraction by one-dimensionally disordered crystals. Jour. Phys. Soc. Japan 7: 3035.CrossRefGoogle Scholar
MacEwan, D. M. C., 1956. Fourier transform methods for studying scattering from lamellar systems. I. A direct method for analysing interstratified mixtures. Koloidzeitschr. 149: 96108.Google Scholar
MacEwan, D. M. C., 1958. Fourier transform methods for studying scattering from lamellar systems. II. The calculation of X-ray diffraction effects for various types of interstratification. Koloidzeitschr. 156: 6167.Google Scholar
MacEwan, D. M. C., Amil, A. Ruiz, and Brown, G. . Interstratified clay minerals. In The X-Ray Identification and Crystal Structures of Clay Minerals. Brown, G., 1961 ed. London: Mineralogical Society, 393445.Google Scholar
MacEwan, D. M. C., and Amil, A. Ruiz. Interstratified clay minerals. In Soil Components. I. Inorganic Components. Gieseking, G. E., 1975 ed. New York: Springer-Verlag, 265334.CrossRefGoogle Scholar
Martin de Vidales, J. L., Vila, E., Amil, A. Ruiz, de la Calle, C., and Pons, C. H. 1990 . Interstratification in Malawi vermiculite: Effect of Bi-ionic K-Mg solutions. Clays & Clay Miner. 38: 513521.CrossRefGoogle Scholar
Martin de Vidales, J. L., de la Calle, C., and Pons, C. H. 1991 . Interstratification K-Mg dans les vermiculites. Comportement particulier de la vermiculite de Malawi. Clay Miner. 26: 571576.CrossRefGoogle Scholar
Mering, J., 1949. Interférence des rayons X dans les systèmes a interstratification desordonnée. Acta Crystallog. 2: 371377.CrossRefGoogle Scholar
Newman, A. C. D., and Brown, G. . The chemical constitution of clays. In Chemistry of Clays and Clay Minerals. Newman, A. C. D., 1987 ed. London: Mineralogical Society, 1128.Google Scholar
Plançon, A., 1981. Diffraction by layer structures containing different kinds of layers and stacking faults. J. Applied Crystallogr. 14: 300304.CrossRefGoogle Scholar
Pons, C. H., Rousseaux, F., and Tchoubar, D. 1981 . Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. I. Etude du système eau montmorillonite-Na en fonction de la température. Clay Miner. 16: 2342.CrossRefGoogle Scholar
Pons, C. H., Pozzuoli, A., Rausell-Colom, J. A., and de la Calle, C. 1989 . Mécanisme de passage de l‘état hydraté à une couche à l‘état zéro couche d'une vermiculite-Li de Santa Olalla. Clay Miner. 24: 479494.CrossRefGoogle Scholar
Reynolds, R. C., 1980. Interstratified clay minerals. In Crystal Structures of Clay Minerals and Their X-Ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 249303.CrossRefGoogle Scholar
Reynolds, R. C., 1988. Mixed layer chlorite minerals. In Reviews in Mineralogy, Vol 19. Hydrous Phyllosilicates. Bailey, S. W., ed. New York: Mineralogical Society of America, 601629.CrossRefGoogle Scholar
Rhoades, J. D., and Coleman, N. T. 1967 . Interstratification in vermiculite and biotite produced by potassium sorption. I. Evaluation by simple X-ray diffraction pattern inspection. Soil Sci. Soc. Amer. Proc. 31: 366372.CrossRefGoogle Scholar
Sato, M., 1965. Structure of interstratified (mixed-layer) minerals. Nature 208: 7080.CrossRefGoogle Scholar
Sawhney, B. L., 1969. Regularity of interstratification as affected by charge density in layer silicates. Soil Sci. Soc. Amer. Proc. 33: 4246.CrossRefGoogle Scholar
Sawhney, B. L., and Reynolds, R. C. 1985 . Interstratified clays as fundamental particles: A discussion. Clays & Clay Miner. 33: 559.CrossRefGoogle Scholar
Shirozu, H., and Bailey, S. W. 1966 . Crystal structure of a two-layer Mg-vermiculite. Amer. Mineral. 51: 11241143.Google Scholar
Srodon, J., 1980. Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner. 28: 401411.CrossRefGoogle Scholar
Stephen, I., 1952. A study of rock weathering with reference to the Malvern Hills. Part I. Weathering of biotite and granite. J. Soil Sci. 87: 2033.CrossRefGoogle Scholar
Tomita, K., and Takahashi, H. 1985 . Curves for the quantification of mica/smectite and chlorite/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner. 33: 379390.CrossRefGoogle Scholar
Tomita, K., and Takahashi, H. 1986 . Quantification curves for the X-ray diffraction analysis of mixed-layer kaolinite/smectite. Clays & Clay Miner. 34: 323329.CrossRefGoogle Scholar
Tomita, K., Takahashi, H., and Watanabe, T. 1988 . Quantification curves for mica/smectite interstratifications by X-ray powder diffraction. Clays & Clay Miner. 36: 258262.CrossRefGoogle Scholar
Walker, G. F., 1950. Trioctahedral minerals in the soil clays of northeast Scotland. Mineral. Mag. 29: 7284.Google Scholar
Watanabe, T., 1988. The structural model of illite/smectite interstratified mineral and the diagram for its identification. Applied Clay Science 7: 97114.Google Scholar