Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-04T12:58:59.464Z Has data issue: false hasContentIssue false

Sorption of Trace Constituents from Aqueous Solutions Onto Secondary Minerals. I. Uranium

Published online by Cambridge University Press:  02 April 2024

L. L. Ames
Affiliation:
Battelle, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
J. E. McGarrah
Affiliation:
Battelle, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
B. A. Walker
Affiliation:
Battelle, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352

Abstract

Well-characterized American Petroleum Institute clay standards, source clays from The Clay Minerals Society, and other secondary minerals were used to determine the effects of U concentration, temperature, and solution composition on U-sorption properties. Uranium concentrations ranged from about 1.00 × 10−4 M to 4.00 × 10−7 M, temperatures from 5° to 65°C and solution compositions containing 0.01 M NaCl and 0.01 M NaHCO3. Silica gel efficiently sorbed uranyl carbonate anion complexes. The higher cation-exchange capacity materials most readily sorbed uranyl ions from the 0.01 M NaCl solution. Temperature increases tended to affect uranyl ion sorption adversely except when the U was present as carbonate complexes. Noncrystalline ferric oxyhydroxides sorbed uranyl ions much more efficiently than any of the secondary crystalline minerals studied. A method for accurately extrapolating U-sorption efficiencies between experimental points based on the Freundlich equation is presented.

Резюме

Резюме

Хорошо схарактеризованные образцы стандартных глии из Американского Нефтяного Института, образцовые глины из Общества по Глинистым минералам и другие вторичные минералы использовались для определения влияния концентрации урана, температуры и состава раствора на свойства сорбции урана. Концентрации урана находились в диапазоне от около 1,00 x 10~4 M до 4,00 x 10~7 М, температуры изменялись от 5° до 65°С и растворы содержали 0,01 M NaCl и 0,01 M NaHC03. Кремнеземный гель хффективно сорбировал анионные комплексы уранилового карбоната. Минералы с повышенной катионо-обменной способностью наиболее охотно сорбировали ураниловые ионы их 0,01 M раствора NaCl. Увеличение температуры влияло обратнопропорционально на сорбцию ураниловых ионов, за исключением случая, когда U присутствовал в виде карбонатных комплексов. Некристаллические железные гидроокиси сорбировали ураниловые ионы более эффективно, чем все иввледованные вторичные кристаллические минералы. Представлен, разработанный на основе уравнения фрейндлиха, метод для точной экстраполяции эффективности сорбции U между экспериментальными точками. [E.G.]

Resümee

Resümee

Gut bestimmte Tonstandards des American Petroleum Institute und der Clay Minerals Society sowie andere sekundäre Minerale wurden verwendet, um die Auswirkungen der U-Konzentration, der Temperatur und der Lösungszusammensetzung auf die U-Adsorption zu bestimmen. Die U-Konzentra-tionen reichten von etwa 1,00 × 10−4 M bis 4,00 × 10−7 M, die Temperatur von 5° bis 65°C. Die Lösungszusammensetzung war 0,01 M NaCl und 0,01 M NaHCO3. Silikagel adsorbierte Uranylkarbonatanionenkomplexe sehr gut. Die Substanzen mit höherer Kationenaustauschkapazität adsorbierten sehr leicht Uranylionen aus der 0,01 M NaCl-Lösung. Ein Temperaturanstieg zeigte einen negativen Effekt auf die Uranyladsorption, außer das U war in Form eines Karbonatkomplexes vorhanden. Nichtkristalline Eisenoxyhydroxide adsorbierten Uranylionen viel wirksamer als alle andere untersuchte sekundäre kristalline Minerale. Es wird eine Methode zur genauen Extrapolation zwischen experimentell bestimmten Punkten der U-Adsorptionseffizienz angegeben, die auf der Freundlich-Gleichung beruht. [U.W.]

Résumé

Résumé

Des standards d'argile bien caracterisés de l'American Petroleum Institute, des argiles de source du Clay Minerals Society, et d'autres minéraux secondaires ont été employés pour déterminer les effets de la concentration d'U, de la température, et de la composition de la solution sur les propriétés de la sorption d'U. Les concentrations d'uranium s’étageaient d’à peu près 1,00 × 10−4 à 4,00 × 10−7 M, les températures de 5°C à 65°C et les compositions des solutions contenant 0,01 M NaCl et 0,001 M NaHCO3. Le gel de silice a sorbé de manière efficace les complexes anion de carbonate uranyl. Les matériaux ayant la capacité d’échange de cations la plus elevée ont sorbé le plus facilement les ions uranyls de la solution 0,01 M NaCl. Des augmentations de température tendaient à affecter adversément la sorption de l'ion uranyl, sauf lorsque l'U était présent en tant que complexes carbonates. Des oxyhydrides ferriques non-cristallins ont sorbé les ions uranyls de manière beaucoup plus efficace qu'aucun des minéraux cristalline secondaires étudies. Une méthode est présentée pour extrapoler précisement les efficacités de sorption d'U entre des points expérimentaux basée sur l’équation de Freundlich. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A. W., 1976 Physical Chemistry of Surfaces New York Wiley.Google Scholar
Ames, L. L., McGarrah, J. E., Walker, B. A. and Salter, P. F., 1982 Sorption of uranium and cesium by basalts and an associated secondary smectite Chem. Geol. 35 205225.CrossRefGoogle Scholar
Ames, L. L., McGarrah, J. E., Walker, B. A. and Salter, P. F., 1983 Uranium and radium sorption on amorphous ferric oxyhydroxide Chem. Geol. .CrossRefGoogle Scholar
Anderson, B. J. and Jenne, E. A., 1970 Free-iron and manganese oxide content of reference clays Soil Sci. 109 163169.CrossRefGoogle Scholar
Dubinin, M. M. and Radushkevich, L. W., 1974 Equation of the characteristic curve of activated charcoal Proc. Acad. Sci. U.S.S.R., Phys. Chem. Sec 55 331333.Google Scholar
Freundlich, H., 1922 Colloid and Capillary Chemistry Methion and Co. London 172179.Google Scholar
Galloway, W. E. and Kaiser, W. R. (1980) Catahoula Formation of the Texas coastal plain: origin, geochemical evolution and characteristics of uranium deposits: Texas Bur. Econ. Geol., Rept. Invest. 100, 81 pp.Google Scholar
Giblin, A. M., Ferguson, J. and Goleby, A. B., 1980 The role of clay adsorption in genesis of uranium ores Uranium in the Pine Creek Geosyncline Vienna Intern. Atomic Energy Agency 521529.Google Scholar
Giblin, A. M., Bans, B. D. and Swaine, D. J., 1981 Laboratory simulation studies of uranium mobility in natural waters Geochem. Cosmochim. Acta 45 699709.CrossRefGoogle Scholar
Goldsztaub, S. and Wey, R., 1955 Adsorption of uranyl ions by clays Bull. Soc. Franc. Mineral. Crist. 78 242253.Google Scholar
Halsey, G. D., 1952 The role of surface heterogeneity in adsorption Adv. Catal. 4 259269.CrossRefGoogle Scholar
Hamaker, J. W. and Thompson, J. M., 1972 Organic Chemicals in the Soil Environment, Vol. I New York Marcel Dekker, Inc. 49143.Google Scholar
Heilman, M. D., Carter, D. L. and Gonzalez, C. L., 1965 The ethylene glycol monoethyl ether technique for determining soil-surface area Soil Science 100 409413.CrossRefGoogle Scholar
Hsi, C. D., 1981 Sorption of uranium(VI) by iron oxides Golden, Colorado Ph.D. thesis, Colorado School of Mines.Google Scholar
Kerr, P. F. d., 1950 American Petroleum Institute Project 49, Clay Mineral Standards, Analytical Data on Reference Clay Materials New York Columbia University Press.Google Scholar
Langmuir, D., 1978 Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits Geochim. Cosmochim. Acta 42 547569.CrossRefGoogle Scholar
Langmuir, D., 1978 Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits Uranium Deposits, Their Mineralogy and Origin Toronto, Canada Mineralogical Association of Canada, Short Course Handbook 3, Univ. Toronto Press 1756.Google Scholar
Nash, J. T., Granger, H.C. and Adams, S.S., 1981 Geology and concepts of genesis of important types of uranium deposits Econ. Geol. 75th Anniv. Vol. I 63116.CrossRefGoogle Scholar
Rancon, D., 1973 The behavior of underground environments of uranium and thorium discharged by the nuclear industry Environmental Behavior of Radionuclides Released in the Nuclear Industry, IAEA-SM-172/55 Vienna, Austria Intern. Atomic Energ. Comm. 333346.Google Scholar
Reinbold, K. A., Hassen, J. J., Means, J. C. and Banwart, W. L., 1979 Adsorption of energy-related organic pollutants: a literature review Env. Prot. Agency Rept. EPA-600/3-79-086, National Tech. Inform. Serv. 1160.Google Scholar
Routson, R. C., Wildung, R. E. and Serne, R. J., 1973 A column cation-exchange capacity procedure for low exchange-capacity soils Soil Sci. 115 107112.CrossRefGoogle Scholar
Schmidt-Collerus, J. J., 1967 Research in uranium geochemistry-investigations of the relationship between organic matter and uranium deposits Colorado U.S. Atom. Energy Comm. Open File Rept. GJO-933-1 and GJO-933-2, U.S. Atomic Energy Commission, Grand Junction.Google Scholar
Sokolowska, Z. and Szczypa, J., 1980 Adsorption isotherms for weak acid anions in soils Geoderma 24 349361.CrossRefGoogle Scholar
Starik, I Ye, Starik, F Ye and Apollonova, A. N., 1958 Adsorption of traces of uranium on iron hydroxide and its desorption by the carbonate method Zh. Neorgan. Khimii .Google Scholar
Tsunaskima, A., Brindley, G. W. and Bastovanov, M., 1981 Adsorption of uranium from solutions by montmorillonite; compositions, and properties of uranyl montmorillonites Clays & Clay Minerals 29 1016.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Non-metallic Minerals London Pergamon Press.Google Scholar
Walton, A. W., Galloway, W. E. and Henry, C. D., 1981 Release of uranium from volcanic glass in sedimentary sequences: an analysis of two systems Econ. Geol. 76 6988.CrossRefGoogle Scholar
Wood, M. I. and Aden, G. D., 1982 Evaluation of sodium bentonite and crushed basalt as waste package backfill materials U.S. Dept. Energy Doc. Richland, Washington RHO-BWI-ST-21, Rockwell Hanford Operations.Google Scholar
Zielinski, R. A., 1980 Uranium in secondary silica: a possible exploration guide Econ. Geol. 75 592602.CrossRefGoogle Scholar