Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-07T05:56:35.127Z Has data issue: false hasContentIssue false

Terahertz Time-Domain Spectroscopy of Selected Layered Silicates

Published online by Cambridge University Press:  01 January 2024

Marián Janek*
Affiliation:
Institute of Technology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84513 Bratislava, Slovakia Comenius University, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Mlynská dolina CH1, SK-84215 Bratislava, Slovakia
Ignác Bugár
Affiliation:
International Laser Centre, Ilkovicova 3, SK-81219 Bratislava, Slovakia
Dušan Lorenc
Affiliation:
International Laser Centre, Ilkovicova 3, SK-81219 Bratislava, Slovakia TU Vienna, Institut für Photonik, Gusshausstrasse 27/387, A-1040 Wien, Austria
Vojtech Szöcs
Affiliation:
Comenius University, Faculty of Natural Sciences, Institute of Chemistry, Mlynská dolina CH2, SK-84215 Bratislava, Slovakia
Dušan Velič
Affiliation:
Comenius University, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Mlynská dolina CH1, SK-84215 Bratislava, Slovakia International Laser Centre, Ilkovicova 3, SK-81219 Bratislava, Slovakia
Dušan Chorvát
Affiliation:
International Laser Centre, Ilkovicova 3, SK-81219 Bratislava, Slovakia
*
* E-mail address of corresponding author: Marian.Janek@savba.sk

Abstract

Micaceous layer silicate clay minerals are attractive materials for applications involving non-linear optics because of their low cost and ability to form well ordered, platy aggregates, but such applications require precise knowledge of the dielectric behavior of the clay. The purpose of the present study was to use Terahertz time-domain spectroscopy (THz-TDS) to determine the dielectric properties of certain cleavable layered clay minerals, including muscovite, vermiculite, phlogopite, and biotite. The samples were characterized by X-ray diffraction and Fourier transform infrared spectroscopy as well as chemical analysis by Energy dispersive X-ray spectroscopy. The THz frequency window investigated was the far-infrared region of 3.3 to ∼40.0 cm−1 corresponding to 0.1 and 1.2 THz, respectively. The samples were selected so that the hydrated form of the interlayer cation, e.g. Mg2+ present in the interlayer gallery of vermiculite, could be compared to species such as phlogopite, biotite, and muscovite with the dehydrated form of interlayer cations such as K+ or Na+. The frequency-dependent complex index of refraction of these natural materials was determined to vary between 2.50 and 2.80. The presence of water in the interlayer space of vermiculite was reflected in the detection of increased values of the absorption index in comparison with the muscovite, phlogopite, and biotite.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper, presented during mid-European Clay Conference, held in Zakopane, Poland, during September 2008, is dedicated to Prof. Gerhard Lagaly on the occasion of his 70th birthday

References

Dai, J. Zhang, J. Zhang, W. and Grischkowsky, D., 2004 Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon Journal of the Optical Society of America B7 13791386 10.1364/JOSAB.21.001379.CrossRefGoogle Scholar
Dorney, T.D. Baraniuk, R.G. and Mittelman, D.M., 2001 Material parameter estimation with terahertz time-domain spectroscopy Journal of the Optical Society of America A 18 15621571 10.1364/JOSAA.18.001562.CrossRefGoogle Scholar
Duvillaret, L. Garet, F. and Coutaz, J.L., 1996 A reliable method for extraction of material parameters in terahertz time-domain spectroscopy IEEE Journal of Selected Topics in Quantum Electronics 2 739746 10.1109/2944.571775.CrossRefGoogle Scholar
Farmer, V.C., 1974 Infrared Spectra of Minerals London Mineralogical Society 331.CrossRefGoogle Scholar
Ferguson, B. and Zhang, X.C., 2002 Materials for terahertz science and technology Nature Materials 1 2633 10.1038/nmat708.CrossRefGoogle ScholarPubMed
Fischer, B.M. Walther, M. and Jepsen, P.U., 2002 Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy Physics in Medicine and Biology 47 38073814 10.1088/0031-9155/47/21/319.CrossRefGoogle ScholarPubMed
Fischer, B.M. Hoffmann, M. Helm, H. Wilk, R. Rutz, F. Kleine-Ostmann, T. Koch, M. and Jepsen, P.U., 2005 Terahertz time-domain spectroscopy and imagin of artificial RNA Optics Express 13 52055215 10.1364/OPEX.13.005205.CrossRefGoogle Scholar
Fischer, B.M. Hoffmann, M. Helm, H. Wilk, R. Modjesch, G. and Jepsen, P.U., 2005 Chemical recognition in terahertz time-domain spectroscopy and imagin Semiconductor Science and Technology 20 S246S253 10.1088/0268-1242/20/7/015.CrossRefGoogle Scholar
Grischkowsky, D. Kedding, S. van Exter, M. and Fattinger, C., 1990 Far-infrared time domain spectroscopy with terahertz beams of dielectrics and semiconductors Journal of the Optical Society of America B7 20062015 10.1364/JOSAB.7.002006.CrossRefGoogle Scholar
Han, P.Y. Tani, M. Usami, M. Kono, S. Kersting, R. and Zhang, X.C., 2001 A direct comparison between terahertz time-domain spectroscopy and far-infrared spectroscopy Journal of Applied Physics 89 23572359 10.1063/1.1343522.CrossRefGoogle Scholar
Hollas, J.M., 2004 Modern Spectroscopy Chichester, UK John Wiley & Sons, Inc..Google Scholar
Kindt, J.T. and Schmuttenmaer, C.A., 1996 Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy Journal of Physical Chemistry 100 1037310379 10.1021/jp960141g.CrossRefGoogle Scholar
Kojima, S. Hitahara, H. Nishizawa, S. Yang, Y.S. and Wada Takeda, M., 2005 Terahertz time-domain spectroscopy of low-energy excitations in glasses Journal of Molecular Structure 744–747 243246 10.1016/j.molstruc.2004.10.045.CrossRefGoogle Scholar
Kröll, J. Darmo, J. and Unterreiner, K., 2006 Terahertz optical activity of sucrose single-crystals Vibrational Spectroscopy 43 324329 10.1016/j.vibspec.2006.03.010.CrossRefGoogle Scholar
Labbé-Lavigne, S. Barret, S. Garet, F. Duvillaret, L. and Coutaz, J.L., 1998 Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy Journal of Applied Physics 83 60076010 10.1063/1.367467.CrossRefGoogle Scholar
Lee, K.S. Lu, T.M. and Zhang, X.C., 2003 The measurement of the dielectric and optical properties of nano thin films by THz differential time-domain spectroscopy Microelectronics Journal 34 6369 10.1016/S0026-2692(02)00139-8.CrossRefGoogle Scholar
McIntosh, C. Toulouse, J. and Tick, P., 1997 The Boson peak in alkali silicate glasses Journal of Non-Crystalline Solids 222 335341 10.1016/S0022-3093(97)90133-2.CrossRefGoogle Scholar
Mickan, S.P. Lee, K.S. Lu, T.M. Munch, J. Abbott, D. and Zhang, X.C., 2002 Double modulated differential THz-TDS for thin film dielectric characterization Microelectronics Journal 33 10331042 10.1016/S0026-2692(02)00108-8.CrossRefGoogle Scholar
Naftaly, N. and Miles, R.E., 2005 Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared Journal of Non-Crystalline Solids 351 33413346 10.1016/j.jnoncrysol.2005.08.003.CrossRefGoogle Scholar
Nagai, N. Imai, T. Fukasawa, R. Kato, K. and Yamaguchi, K., 2004 Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy Applied Physics Letters 85 40104012 10.1063/1.1811795.CrossRefGoogle Scholar
Reimann, K., 2007 Table-top sources of ultrashort THz pulses Reports on Progress in Physics 70 15971632 10.1088/0034-4885/70/10/R02.CrossRefGoogle Scholar
Rieder, M. Píchová, A. Fassová, M. Feiduková, E. and Černý, P., 1971 Chemical composition and physical properties of lithium-iron micas from the Krušné Hory (Erzgebirge), Czechoslovakia and Germany. Part B: Cell parameters and optical data Mineralogical Magazine 38 190196 10.1180/minmag.1971.038.294.08.CrossRefGoogle Scholar
Schlömann, E., 1964 Dielectric losses in ionic crystals with disordered charge distributions Physical Review 135 A413A419 10.1103/PhysRev.135.A413.CrossRefGoogle Scholar
Sharma, K.K. (2006) Optics — Principles and Applications (Sharma, K.K., editor). Elsevier, Oxford, UK.Google Scholar
Strom, U. and Taylor, P.C., 1977 Temperature and frequency dependence of the far infra-red and microwave optical absorption in amorphous materials Physical Review 16 55125522 10.1103/PhysRevB.16.5512.CrossRefGoogle Scholar
Takahashi, M., Ishikawa, Y., Nishizawa, J., and Ito, H. (2005) Low-frequency vibrational modes of riboflavin and related compounds. Chemical Physics Letters, 401, 475482.CrossRefGoogle Scholar
Takahashi, M. Kawazoe, Y. Ishikawa, Y. and Ito, H., 2006 Chemical Physics Letters 429 371377 10.1016/j.cplett.2006.08.064.CrossRefGoogle Scholar
Thrane, L. Jacobsen, R.H. Uhd Jepsen, P. and Keiding, S.R., 1995 THz reflection spectroscopy of liquid water Chemical Physics Letters 240 330333 10.1016/0009-2614(95)00543-D.CrossRefGoogle Scholar
Wahlstrom, E.E., 1960 Optical Crystallography New York John Wiley & Sons, Inc. 10.1063/1.3056750.CrossRefGoogle Scholar
Walther, M. Fischer, B.M. and Jepsen, P.U., 2003 Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared Chemical Physics 288 261268 10.1016/S0301-0104(03)00031-4.CrossRefGoogle Scholar
Whitayachumnankul, W. Ferguson, B. Rainsford, T. Mickan, S.P. Abbott, D., Badenes, G. Abbott, D. Serpengützel, A., 2005 Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration Photonic Materials, Devices, and Applications Washington, USA Bellingham 221231 10.1117/12.612946.CrossRefGoogle Scholar
Whitayachumnankul, W. Ferguson, B. Rainsford, T. Mickan, S.P. and Abbott, D., 2005 Simple material parameter estimation via terahertz time-domain spectroscopy Electronics Letters 41 800801 10.1049/el:20051467.CrossRefGoogle Scholar